24 resultados para water supply system
Resumo:
Biomanipulation is a form of biological engineering in which organisms are selectively removed or encouraged to alleviate the symptoms of eutrophication. Most examples involve fish and grazer zooplankton though mussels have also been used. The technique involves continuous management in many deeper lakes and is not a substitute for nutrient control. In some lakes, alterations to the lake environment have given longer-term positive effects. And in some shallow lakes, biomanipulation may be essential, alongside nutrient control, in re- establishing former aquatic-plant-dominated ecosystems which have been lost through severe eutrophication. The emergence of biomanipulation techniques emphasises that lake systems are not simply chemical reactors which respond simply to engineered chemical changes, but very complex and still very imperfectly understood ecosystems which require a yet profounder understanding before they can be restored with certainty.
The significance of sedimentation and sediments to phytoplankton growth in drinking-water reservoirs
Resumo:
In the mesotrophic-eutrophic Saidenbach Reservoir in Saxony, the nanoplankton and cyanobacteria have increased at the expense of diatom dominance, due to a doubling of the external phosphorus load in the last 15 years. However, the phosphorus sedimentation flux is still very high (up to 80% of the input), corresponding to more than 2 g m2 d-1 in terms of dry weight. There is a strong correlation between the abundance of diatoms in the euphotic zone and their sedimentation flux (with a delay of about 2 weeks). Only about 25% of the deposited material could be clearly attributed to plankton biomass; the remainder resulted from flocculation and precipitation processes or directly from the inflow of clay minerals. The ash content of the deposited material was high (73%). Thus the sedimentation flux can be considered to operate as an internal water-treatment/oligotrophication process within the lake. The neighbouring Neunzehnhain Reservoir still has a very clear water with a transparency up to 18 m depth. Though the sediment was not much lower than Saidenbach sediment in total phosphorus and total numbers of bacteria, sulphide was always absent and the ratio of Fe 2+ to Fe 3+ was very low in the upper (0- 5 cm) layer. Thus the external and internal phosphorus loads do not attain the critical level necessary to induce a ”phosphorus - phytoplankton” feedback loop.
Resumo:
Esthwaite Water is the most productive or eutrophic lake in the English Lake District. Since 1945 its water quality has been determined from weekly or biweekly measurements of temperature, oxygen, plant nutrients and phytoplankton abundance. The lake receives phosphorus from its largely lowland-pasture catchment, sewage effluent from the villages of Hawkshead and Near Sawrey, and from a cage-culture fish farm. From 1986 phosphorus has been removed from the sewage effluent of Hawkshead which was considered to contribute between 47% and 67% of the total phosphorus loading to the lake. At the commencement of phosphorus removal regular measurements of phosphorus in the superficial 0-4 cm layer of lake sediment were made from cores collected at random sites. Since 1986 the mean annual concentration of alkali-extractable sediment phosphorus has decreased by 23%. This change is not significant at the 5% level but nearly so. There has been no marked change in water quality over this period. Summer dominance of blue-green algae which arose in the early 1980s after decline of the previous summer forms, Ceratium spp., has been maintained. Improvement in water quality is unlikely to be achieved at the present phosphorus loading.
Resumo:
Like other rivers in the Paris area, the Oise is subject to important seasonal algal blooms. This eutrophication generates notable problems for the production of drinking-water from a treatment plant on the river at Méry. A mathematical model has been developed to simulate variation in water quality in a pre-treatment storage basin, and another model is currently being adapted to model the River Oise. Integration of the two models should provide a comprehensive tool for predicting variations of phytoplankton and water-quality parameters associated with algal blooms. This will be a decision-aid for optimizing control of the treatment process for providing potable water.
Resumo:
Tastes and odours are amongst the few water quality standards immediately apparent to a consumer and, as a result, account for most consumer complaints about water quality. Although taste and odour problems can arise from a great many sources, from an operational point of view they are either ”predictable” or ”unpredictable”. The former - which include problems related to actinomycete and algal growth - have a tendency to occur in certain types of water under certain combinations of conditions, whereas the latter - typically chemical spills - can occur anywhere. Long-term control is one option for predictable problems, although biomanipulation on a large scale has had utile success. Detection and avoidance is a more practicable option for both predictable and unpredictable problems, particularly if the distribution network can be serviced from other sources. Where these are not feasible, then water treatment, typically using activated carbon, is possible. In general there is a reasonable understanding of what compounds cause taste and odour problems, and how to treat these. An efficient taste and odour control programme therefore relies ultimately on good management of existing resources. However, a number of problems lie outside the remit of water supply companies and will require more fundamental regulation of activities in the catchment.
Resumo:
Whilst current methods for the isolation and enumeration of Cryptosporidium spp. oocysts in water have provided some insight into their occurrence and significance, they are regarded as being inefficient, variable and time-consuming, with much of the interpretation being left to the expertise of the analyst. Two expectations of novel developments are to reduce the variability and subjectivity associated with the isolation and identification of oocysts. Flocculation, immunomagnetisable and flow cytometric techniques, for concentrating oocysts from water samples, should prove more reliable than current methods, whilst the development of more avid and specific monoclonal antibodies in conjunction with the use of nuclear fluorochromes will aid identification. Further insight into the viability, taxonomy, species identification, infectivity and virulence of the parasite should be forthcoming through the use of techniques such as the polymerase chain reaction, in situ hybridisation and non-uniform alternating current electrical fields. Such information is necessary in order to enable microbiologists, epidemiologists, engineers, utility operators and regulators to assess the safety of a water supply, with respect to Cryptosporidium contamination, more effectively.
Resumo:
This is the Wetland resource evaluation and the NRA's role in its conservation: Classification of British wetlands report produced by the National Rivers Authority in 1995. This R&D document provides a clear classification for wetlands in England and Wales. The classification incorporates many of the existing ideas on the subject but avoids some of the problems associated with other classifications. A two-layered 'hydrotopographical' classification is proposed. The first layer identifies situation-types, i.e. the position the wetland occupies in the landscape, with special emphasis upon the principal sources of water. The second layer identifies hydrotopographical elements, i.e. units with distinctive water supply and, sometimes, distinctive topography in response to this. This system is seen as an independent, basic, classification upon which it is possible to superimpose additional, independent classifications based on other features (e.g. base-status, fertility, vegetation, management etc.). Some proposals for such additional classifications are provided.
Resumo:
Baltimore Harbor is polluted by discharge of sewage and industrial wastes into tributary streams and peripheral waters. The Harbor is used extensively for navigation, industrial water supply, and recreation as well as for waste disposal. The degree of pollution varies from negligible in the principal fairway to severe in the innermost sections. Private industry discharges several hundred tons of acid materials daily and is also the principal source of organic pollution.
Resumo:
Live clams collected from their natural beds were depurated by starving them in water. Water from their natural environment, potable water from municipal water supply and sodium chloride solution made up to the strength of natural brackish water as well as all these chlorinated at 5 p.p.m. level were used. The acid insoluble ash could be brought down to insignificant level by depuration in natural water for a period of 16-18 h. Bacterial quality of the meat also could be improved by this method. Chlorination of the system at the end of depuration further improves the bacterial quality of the meat.