22 resultados para unknown-input functional observability
Resumo:
A significant fraction of the total nitrogen entering coastal and estuarine ecosystems along the eastern U.S. coast arises from atmospheric deposition; however, the exact role of atmospherically derived nitrogen in the decline of the health of coastal, estuarine, and inland waters is still uncertain. From the perspective of coastal ecosystem eutrophication, nitrogen compounds from the air, along with nitrogen from sewage, industrial effluent, and fertilizers, become a source of nutrients to the receiving ecosystem. Eutrophication, however, is only one of the detrimental impacts of the emission of nitrogen containing compounds to the atmosphere. Other adverse effects include the production of tropospheric ozone, acid deposition, and decreased visibility (photochemical smog). Assessments of the coastal eutrophication problem indicate that the atmospheric deposition loading is most important in the region extending from Albemarle/Parnlico Sounds to the Gulf of Maine; however, these assessments are based on model outputs supported by a meager amount of actual data. The data shortage is severe. The National Research Council specifically mentions the atmospheric role in its recent publication for the Committee on Environmental and Natural Resources, Priorities for Coastal Ecosystem Science (1994). It states that, "Problems associated with changes in the quantity and quality of inputs to coastal environments from runoff and atmospheric deposition are particularly important [to coastal ecosystem integrity]. These include nutrient loading from agriculture and fossil fuel combustion, habitat losses from eutrophication, widespread contamination by toxic materials, changes in riverborne sediment, and alteration of coastal hydrodynamics. "
Resumo:
Unknown larval stages of Tylosurus strongylurus and Sphyraena jello have been traced from Vellar Estuary, Porto Novo (lat. 11 degree 29'N; long. 79 degree 46' E). Descriptions of different stages (7-17.5 mm T. strongylurus, and 18 and 22.5 mm S. jello) are given. A thorough ichthyoplankton survey for 2 years (Nov. 1977-Oct. 1979) in the estuary revealed that these larvae were very rare in the estuary and were caught on the occasion (Nov. 1978) only.
Resumo:
Fish flour from dried waste consisting of head, tail, fins and entrails was enzimatically hydrolysed using various proteases and the hydrolysate was spray dried. The functional properties such as water-fat absorption ratio, foaming and solubility index of the hydrolysates and fish flour revealed that some of the products might find significant uses in the food and/or cosmetics industry. Electrophoretic separation of the proteins from the fish flour and of the hydrolysates indicated that almost all the flour proteins are susceptible to proteolytic cleavage with the exception of one or two. The extent of degree of hydrolysis from 43-70.3% with a simultaneous decrease in unpleasant smell suggest an economical tool for minimizing odour pollution due to fish industry waste deterioration.
Resumo:
Comparative production potential of red tilapia (a mutant hybrid of Oreochromis mossambicus) and Nile tilapia (Oreochromis niloticus) under low-input aquaculture was studied in six ponds of 360 m² each with an average water depth of 90 cm. Three ponds were stocked with fingerlings of O. niloticus (average weight 11.4±3.48 g) while three other ponds were stocked with red tilapia (average weight 10.72±2.5 g) at a density of 20,000 fingerlings/ha. Supplementary feed consisting of rice bran was given daily at 4-6% of standing biomass. Ponds were fertilized at fortnightly intervals with cattle manure 750 kg/ ha. After six months of rearing, gross fish productions of 3,218 and 3,017 kg/ha were obtained from O. niloticus and red tilapia ponds, respectively. Of this, table size fish (>80 g in size) production amounted to 2,366 and 2,823 kg/ha from O. niloticus and red tilapia culture, respectively. Analysis of cost and benefits showed higher benefit from red tilapia culture.