33 resultados para toxic shock syndrome toxin 1
Resumo:
In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.
Resumo:
Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ~ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular toxicity and adverse impacts during at least some K. brevis blooms.
Resumo:
With the global proliferation of toxic Harmful Algal Bloom (HAB) species, there is a need to identify the environmental and biological factors that regulate toxin production. One such species, Karenia brevis, forms nearly annual blooms that threaten coastal regions throughout the Gulf of Mexico. This dinoflagellate produces brevetoxins, potent neurotoxins that cause neurotoxic shellfish poisoning and respiratory illness in humans, as well as massive fish kills. A recent publication reported that a rapid decrease in salinity increased cellular toxin quotas in K. brevis and hypothesized that brevetoxins serve a role in osmoregulation. This finding implied that salinity shifts could significantly alter the toxic impacts of blooms. We repeated the original experiments separately in three different laboratories and found no evidence for increased brevetoxin production in response to low-salinity stress in any of the eight K. brevis strains we tested, including three used in the original study. Thus, we find no support for an osmoregulatory function of brevetoxins. The original publication also stated that there was no known cellular function for brevetoxins. However, there is increasing evidence that brevetoxins promote survival of the dinoflagellates by deterring grazing by zooplankton. Whether they have other as yet unidentified cellular functions is currently unknown.
Resumo:
Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.
Resumo:
Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42:170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we conducted food removal experiments using the cosmopolitan copepod grazer Acartia tonsa. Wild-caught, adult female A. tonsa were exposed to 6 monoalgal or mixed algal diets made using bloom concentrations of toxic (CCMP 2064) and non-toxic (CSIC1) strains of K. veneficum. Ingestion and clearance rates were calculated using the equations of Frost (1972). Exposure to the toxic strain of K. veneficum did not contribute to an increased mortality of the copepods and no significant differences in copepod mortality were found among the experimental diets. However, A. tonsa had significantly greater clearance and ingestion rates when exposed to a monoalgal diet of the non-toxic strain CSIC1 than when exposed to the monoalgal diet of toxic strain CCMP 2064 and mixed diets dominated by this toxic strain. These results support the hypothesis that karlotoxins in certain strains of K. veneficum deter grazing by potential predators and contribute to the formation and continuation of blooms.
Resumo:
One of the chalkones synthesised in the author's laboratory was selected to determine its toxicity to fish, Lepidocephalicthys thermalis at different concentrations and time periods. Ascorbic acid contents were determined and it was found to be antitoxic.
Resumo:
Fungal infection was observed in Catla catla and Labeo rohita cultured in two private fish farms. The later stage of the infection resulted in ulcerations followed by haemorrhage on the dorsal surface of the body. Initially, usual treatments of copper sulphate, potassium permanganate and common salt solution were tried, but no improvement was observed. Then repeated intramuscular injections of homeopathic drug Heaper Sulpher and Arnica spray were given with encouraging results. Infection reported in another farm was also successfully controlled using a similar treatment.
Resumo:
Concentration of toxic metals namely Zn, Cu, Fe, Cd and Pb in the marine benthos off Bombay Coast, Maharashtra (India) was estimated. Maximum concentration of Zn, Fe and Pb was from the organisms of Thana Creek. Higher concentration of Cu was encountered in benthic organisms off Versova. Cd was detected in some organisms and was maximum in the organisms collected from Mahim.
Resumo:
The present communication deals with the feeding trials of brown (Sargassum bovianum), green (Caulerpa faridii) and red (Gracilaria corticola) seaweeds in albino rats for a period of thirty days in order to investigate their digestibility and acceptability as supplementary food for animals. The parameters used were: changes in blood hemoglobin, ESR, MCHC, PCV and plasma vitamin levels. The result revealed that all the three species of seaweeds had acceptability up to 5% level, as no ill effect was noted during the experiment. But at 10% and 20% levels, marked changes were observed in blood parameters with diarrhea, vomiting and convulsions indicating possibilities of either tissue and muscular dystrophy, gastrointestinal tract necrosis or functional disorder of central nervous system. A heavy mortality was noted due to excessive water loss through diarrhea and vomiting. However, no mortality was observed after 22nd day at both 10% and 20% levels with subsided clinical signs. The results suggest that these three seaweed species could be used safely as a supplementary food, in native form, in animals at low concentrations.
Resumo:
The toxic effects of dimecron on growth, body composition and oxygen consumption of fingerlings of Labeo rohita were studied. Dimecron concentrations of 4 and 8 mg/l were used. Both acute (3-h) and chronic (15- 42 d) exposure schedules were followed. Compared with the control fish, both 4 and 8 mg/l dimecron treatment significantly suppressed weight gained in fish by 9.71% and 30% respectively during a 42 day exposure period. However, the length of fish was suppressed by 11.46% significantly only in fish group exposed to 8 mg/l dimecron. Similarly, the protein content was also significantly reduced in the above group of fish. The oxygen consumption of fish was elevated considerably, but not significantly in both group of treated fish (8.5% and 26.07%) during acute exposure. However, after 15 days of exposure the rate decreased by 18.98% significantly only in fish exposed to 8 mg/l dimecron. The threshold level of DO at low oxygen environment found to be slightly higher in fish at 8 mg/l dimecron. The survival time at the above oxygen condition was reduced during acute exposure (3-h) and that was extended during chronic (15-d) exposure.
Resumo:
The present communication is a survey report carried out to assess the incidence of toxic mycoflora on seven types of agriculture products/by products incorporated during fish culture as supplementary dietary items. Samples were obtained from various sources at Darbhanga, Madhubani and Samashtipur districts during summer, winter and monsoon months. Out of the total 1774 samples, only 894 appeared to be fresh visually reflecting average incidence of contamination around 46.6%. However, the apparently fresh samples, when subjected to culture, 26.9% of them were found to be contaminated. Thus, degree of fungal spoilage in feed ingredients in parts of north Bihar appears to be significantly high (73.5%). The present study illustrates the facts with special reference to Aspergillus flavus, A. parasiticus (elaborating aflatoxins) A. ochraceous, Penicilium viradicatuin (elaborating ochratoxins) and A. versicolor (elaborating sterigmatocystin). The other strains already known for their toxigenic potentials that appeared on the present substrates included A. niger, A. fumigatus, A. candidus, P. islandicum, Rhizopus spp. and Mucur spp. Studies indicate that the prevalent climatic factors like temperature and relative humidity facilitate a congenial condition almost all through the year and in particular during summer and monsoon months. But water content of the substrates is a vital factor that further accelerates the pace of mycobial spoilage. A thorough sun-drying of the agricultural commodities before prolonged storage to bring water content below the "low risk limit" may significantly reduce the incidence of molds.
Resumo:
The exposure to the highest dimecron cone. (8 mg/1) resulted in severe histopathological changes in different tissues of Labeo rohita fingerling. Cell necrosis, cytoplasmic vacuolation and pycnotic nuclei were major abnormalities observed in liver tissue. The degeneration of glomeruli and proximal tubules, cytoplasmic vacuolation and focal haemorrhagic area were noted in case of kidney tissues. Major changes observed in intestinal tissues were degeneration of villi, disintegrity of mucosal layers, necrosis of epithelial cells etc. However, hypertrophy of cells and granulation of cytoplasm were major histopathological changes observed in fish at lower dimecron cones. (4 mg/1).
Resumo:
Incidence of Epizootic Ulcerative Syndrome (EUS) has been recorded for the first time in freshwater fishes in the endemic area of Punjab, Pakistan. Survey of private fish farms, hatchery and natural water bodies was conducted in a radius of 14 Km from around river Ravi near Lahore (Punjab Province) Pakistan. Out Of 1628 fishes belonging to 18 genera, 517 fishes of 10 genera were found affected with EUS. The incidence of EUS in culturable fishes was higher in Cirrhina mrigala (15.4%) moderate in Catla cat/a (13.3%) and lower in Labeo rohita (5.0%). Exotic fish, Chinese carp Ctenoparyngodon idella and Hypophthalmicthys molitrix were not affected with EUS. In non-culturable fishes the incidence of EUS was highest in Channa punctatus (72.8%) moderate in by C. straitus (65.45%) and comparatively lower Puntius ticto (43.7%). A slow growing temperature sensitive Saprolegnia spp. was isolated from all of EUS infected fish species. Aeromonas spp. and Pseudomonas spp. were isolated from the diseased fishes. Ectoparasites viz. Lernaea, Argulus and Triclwdina spp. were also isolated from the skin and gills of infected fish species. The disease was more severe in water having low alkalinity (70 mg/1), hardness (75 mg/1) and low temperature of 10-12 °C.
Resumo:
Latex beads were sensitized with monoclonal antibodies (MAb) rose against VP28 of WSSV. The optimum concentration of MAb required to sensitize the latex beads was 125 µg/ml. The sensitized latex beads were used to detect WSSV from PCR-positive stomach tissue homogenates obtained from infected shrimp. Stomach tissue homogenates from WSSV-infected shrimp agglutinated the sensitized latex beads within 10 minutes, while uninfected samples did not produce any agglutination, although non-specific agglutinations were observed in some samples. The analytical sensitivity, analytical specificity, diagnostic sensitivity and diagnostic specificity of the (LAT) agglutination test were assessed. The analytical sensitivity of the test was 40 ng of purified WSSV (2 µg/ml). The sensitized latex beads did not agglutinate with normal shrimp tissue or MBV-infected tissue homogenate. The test has a diagnostic sensitivity of 70 and 45%, respectively, compared to single-step and nested PCR. The diagnostic specificity of the test was 82%. This test is a simple and rapid on-farm test which can be used to corroborate clinical signs for the detection of WSSV in grow-out ponds.