41 resultados para stratification merit
Resumo:
Invertebrate conservation relies not only on public support and political will, but also on possessing an adequate understanding of the distribution and ecology of invertebrate species and communities. In the UK, RIVPACS is making an important contribution to assessing the conservation importance of river invertebrate assemblages. So far, work has largely centred on using RIVPACS as an integral part of SERCON (System for Evaluating Rivers for Conservation), in which data collected using the standard RIVPACS method are interpreted with reference to conservation criteria such as species richness and representativeness. Applications of RIVPACS to other areas of conservation - whether providing information on the ecological requirements of rare species, monitoring the success of river restoration projects, or making broader assessments of sustainability - are probably more limited, but merit further examination. It is important to develop closer links between RIVPACS and techniques such as SERCON and RHS (River Habitat Survey) in order to maximise the benefit each can bring tostudies on conservation and biodiversity. It should also be recognised that there are limitations in transferring such systems to other countries where approaches to nature conservation may be very different.
Resumo:
The hydrology of the Ebrie coastal lagoon in Abidjan area is summarized. The authors describe the oxygenation in that area during the two extreme seasons of the hydrological cycle: the low-water season (March-April) and the high-water season (Sept-Oct). The influences of the continental and oceanic waters, photosynthesis, exchanges with the atmosphere and pollution are considered. The oxigen consumption of primary organic pollution represents from 9 to 12% of the content of the waters that circulates in the area. It is geographically very heterogeneous. The central basin, swept by strong marine and fresh water currents, shows a rather high level of water oxygenation. In the peripheric bays, water circulation and mixing are less important and pollution accelerates the natural eutrophic processes. During the low-water season, a vertical stratification is responsible for a bottom anoxic layer and the deposit of reduced organic silts. On the contrary, supersaturations, up to 200%, are recorded on the surface layer. During the high-water season the break of the vertical stratification sets the loose reduced silts into suspension and partly reoxygenates the bottom waters. A classification of the different areas, based on the oxygen vertical profiles is proposed.
Resumo:
The document reports on the major findings from a definition study to appraise the options to develop fish tracking equipment, in particular tags and data logging systems, in order to improve the effeciency of the Agency tracking studies and to obtain a greater understanding of fish biology. The definition study was in two parts. The first, Phase 1, collated and evaluated all the known tracking systems that may be suitable for studies of fish which are either produced commercially or have been constructed for specific in-house studies. Phase 2 was an evaluation of all the tracking equipment considered to merit further investigation in Phase 1. The deficiencies between existing and required technologies to improve the efficiency of Agency's tracking studies and to obtain a greater understanding of fish biology are also identified.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
Growth of a temperate reefa-ssociated fish, the purple wrasse (Notolabrus fucicola), was examined from two sites on the east coast of Tasmania by using age- and length-based models. Models based on the von Bertalanffy growth function, in the standard and a reparameterized form, were constructed by using otolith-derived age estimates. Growth trajectories from tag-recaptures were used to construct length-based growth models derived from the GROTAG model, in turn a reparameterization of the Fabens model. Likelihood ratio tests (LRTs) determined the optimal parameterization of the GROTAG model, including estimators of individual growth variability, seasonal growth, measurement error, and outliers for each data set. Growth models and parameter estimates were compared by bootstrap confidence intervals, LRTs, and randomization tests and plots of bootstrap parameter estimates. The relative merit of these methods for comparing models and parameters was evaluated; LRTs combined with bootstrapping and randomization tests provided the most insight into the relationships between parameter estimates. Significant differences in growth of purple wrasse were found between sites in both length- and age-based models. A significant difference in the peak growth season was found between sites, and a large difference in growth rate between sexes was found at one site with the use of length-based models.
Resumo:
Seasonal and cross-shelf patterns were investigated in larval fish assemblages on the continental shelf off the coast of Georgia. The influence of environmental factors on larval distributions also was examined, and larval transport processes on the shelf were considered. Ichthyoplankton and environmental data were collected approximately every other month from spring 2000 to winter 2002. Ten stations were repeatedly sampled along a 110-km cross-shelf transect, including four stations in the vicinity of Gray’s Reef National Marine Sanctuary. Correspondence analysis (CA) on untransformed community data identified two seasonal (warm weather [spring, summer, and fall] and winter) and three cross-shelf larval assemblages (inner-, mid-, and outer-shelf ). Five environmental factors (temperature, salinity, density, depth of the water column, and stratification) were related to larval cross-shelf distribution. Specifically, increased water column stratification was associated with the outer-shelf assemblage in spring, summer, and fall. The inner shelf assemblage was associated with generally lower temperatures and lower salinities in the spring and summer and higher salinities in the winter. The three cross-shelf regions indicated by the three assemblages coincided with the location of three primary water masses on the shelf. However, taxa occurring together within an assemblage were transported to different parts of the shelf; thus, transport across the continental shelf off the coast of Georgia cannot be explained solely by twodimensional physical factors.
Resumo:
Pacific hake, Merluccius productus, the most abundant groundfish in the California Current Large Marine Ecosystem (CCLME), is a species of both commercial significance, supporting a large international fishery, and ecological importance, connecting other species as both predator and prey. Coastal Pacific hake migrations are characterized by movements between northern summer feeding areas and southern winter spawning areas, with variations in annual abundance, distribution, and the extent of these movements associated with varying climate-ocean conditions. In general, warm (cool) years with enhanced (reduced) stratification and poleward (equatorward) transport are often related to good (poor) recruitment, increased (decreased) northward distribution, and reduced (enhanced) growth. However, the classic periodic pattern of annual migration and distribution may no longer be fully representative. Based on recent advances in the understanding of climate-ocean variability off the U.S. west coast, we hypothesize that the annual movements of Pacific hake are more responsive to climate-ocean variability than previously thought, and further, that changes observed in Pacific hake distributions may reflect long-term changes in climate-ocean conditions in the CCLME. Therefore, an updated model of these relations is key to effective monitoring and management of this stock, as well as to devising scenarios of future change in the CCLME as a result of climate variations. The current state of knowledge of the relationship between the Pacific hake and its environment is reviewed, highlighting emerging ideas compared to those of the past, and priorities for future research are suggested.
Resumo:
Portuguese commercial elasmobranch landings were analyzed for the period 1986–2001. An average of 5,169 (± 795 t) were landed yearly, representing 18 families, 29 genera, and 34 confirmed species. However, annual landings for the fishery generally decreased over time, with a corresponding increase in price per kilogram. The most important group, Raja spp., accounted for 33% of the landings or 26,916 t. They were followed by Centroscymnus coelolepis, Scyliorhinus spp., Centrophorus granulosus, and Centrophorus squamosus (accounting for 12%, 12%, 11%, and 9% of the landings, respectively). In the absence of CPUE data, the comparative trends of landings and price were employed as an indicator of the “status” of specific elasmobranch species. Raja spp., Centrophorus granulosus, Mustelus spp., Torpedo spp., and Squatinidae displayed indications of possible overexploitation, and they merit the focus of future research.
Resumo:
This is the Stillwaters monitoring programme. Summary results 2001 and 2002 from the Environment Agency North West. Until January 2001 the South Area Stillwaters Sampling Programme consisted of a rolling programme where five to six stillwaters were sampled three times a year (spring, summer and autumn). However, this method was not yielding the water quality information required for long term monitoring. Local weather conditions influence short-term water quality events, e.g. algal blooms, nutrient consumption, stratification, super-saturation etc, so results from one day sampling could only be regarded as individual ‘spot’ samples. Therefore year-on-year comparisons could not be made. It was decided that long-term water quality monitoring of the stillwaters would benefit more from sampling nutrient abundance over winter months. This would give an insight into the carry-over of nutrients available for algal growth the following year and so year-on-year productivity could be assessed. Survey results shown in this report were from: The Mere, Rostherne Mere, Melchett Mere, Tabley Mere, Tatton Mere, Hatchmere, Oak Mere, Black Lake, Chapel Mere, Bar Mere, Oss Mere, Marbury Big Mere, Comber Mere and Betley Mere.
Resumo:
The continental shelf adjacent to the Mississippi River is a highly productive system, often referred to as the fertile fisheries crescent. This productivity is attributed to the effects of the river, especially nutrient delivery. In the later decades of the 2oth century, though, changes in the system were becoming evident. Nutrient loads were seen to be increasing and reports of hypoxia were becoming more frequent. During most recent summers, a broad area (up to 20,000 krn2) of near bottom, inner shelf waters immediately west of the Mississippi River delta becomes hypoxic (dissolved oxygen concentrations less than 2 mgll). In 1990, the Coastal Ocean Program of the National Oceanic and Atmospheric Administration initiated the Nutrient Enhanced Coastal Ocean Productivity (NECOP) study of this area to test the hypothesis that anthropogenic nutrient addition to the coastal ocean has contributed to coastal eutrophication with a significant impact on water quality. Three major goals of the study were to determine the degree to which coastal productivity in the region is enhanced by terrestrial nutrient input, to determine the impact of enhanced productivity on water quality, and to determine the fate of fixed carbon and its impact on living marine resources. The study involved 49 federal and academic scientists from 14 institutions and cost $9.7 million. Field work proceeded from 1990 through 1993 and analysis through 1996, although some analyses continue to this day. The Mississippi River system delivers, on average, 19,000 m3/s of water to the northern Gulf of Mexico. The major flood of the river system occurs in spring following snow melt in the upper drainage basin. This water reaches the Gulf of Mexico through the Mississippi River birdfoot delta and through the delta of the Atchafalaya River. Much of this water flows westward along the coast as a highly stratified coastal current, the Louisiana Coastal Current, isolated from the bottom by a strong halocline and from mid-shelf waters by a strong salinity front. This stratification maintains dissolved and particulate matter from the rivers, as well as recycled material, in a well-defined flow over the inner shelf. It also inhibits the downward mixing of oxygenated surface waters from the surface layer to the near bottom waters. This highly stratified flow is readily identifiable by its surface turbidity, as it carries much of the fine material delivered with the river discharge and resuspended by nearshore wave activity. A second significant contribution to the turbidity of the surface waters is due to phytoplankton in these waters. This turbidity reduces the solar radiation penetrating to depth through the water column. These two aspects of the coastal current, isolation of the inner shelf surface waters and maintenance of a turbid surface layer, precondition the waters for the development of near bottom summer hypoxia.
Resumo:
In August 2011, the NOAA National Ocean Service (NOS) conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters of the continental shelf in the northwestern Gulf of Mexico (GOM). The original sampling design included 50 randomly selected sites from the Mississippi River delta to the U.S./Mexican border, representing a total area of 111,162 square kilometers; however, vessel failures and inclement weather precluded sampling at 16 sites in the western-most part of the study region. Sampling was completed at the remaining 34 sites in offshore waters between the Mississippi River delta and Freeport, Texas, representing an estimated 75,591 square kilometers. Field sampling followed standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Water depths ranged from 13 – 83 m throughout the study area. About 9 % of the area had sediments composed of sands (< 20 % silt+clay), 47 % of the area was composed of intermediate muddy sands (20 – 80 % silt+clay), and 44 % of the sampled area consisted of mud (> 80 % silt+clay). About 50 % of the area (represented by 17 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all of the sites sampled had levels of TOC < 20 mg/g, well below the range associated with potentially harmful effects to benthic fauna (> 50 mg/g). Surface salinities ranged from 23.4 – 36.5 psu, with salinity generally increasing with distance west of the Mississippi River delta. Bottom salinities varied between 31.1 and 36.5 psu, with lowest values occurring at shallow, inner-shelf stations. Surface-water temperatures varied between 29.8 and 31.5 ºC, while near-bottom waters ranged in temperature from 19.4 – 31 ºC. An index of density stratification (Δσt) indicated that portions of coastal shelf waters in the northwestern GOM at the time of this sampling were strongly stratified. Values of Δσt at 19 of the 34 sites sampled in this study (56 % of the study area) ranged from 2.2 to 12.4, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2). Stratification was strongest close to the Mississippi River delta, and decreased with distance west of the delta.
Resumo:
In June 2008, the NOAA National Ocean Service (NOS), in conjunction with the EPA National Health and Environmental Effects Laboratory (NHEERL), conducted an assessment of the status of ecological condition of soft-bottom habitat and overlying waters within the boundaries of Stellwagen Bank National Marine Sanctuary (SBNMS). The sanctuary lies approximately 20 nautical miles east of Boston, MA in the southwest Gulf of Maine between Cape Ann and Cape Cod and encompassing 638 square nautical miles (2,181 km2). A total of 30 stations were targeted for sampling using standard methods and indicators applied in prior NOAA coastal studies and EPA’s Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA). A key feature adopted from these studies was the incorporation of a random probabilistic sampling design. Such a design provides a basis for making unbiased statistical estimates of the spatial extent of ecological condition relative to various measured indicators and corresponding thresholds of concern. Indicators included multiple measures of water quality, sediment quality, and biological condition (benthic fauna, fish tissue contaminant levels). Depths ranged from 31 – 137 m throughout the study area. About 76 % of the area had sediments composed of sands (< 20 % silt-clay), 17 % of the area was composed of intermediate muddy sands (20 – 80 % silt-clay), and 7 % of the sampled area consisted of mud (> 80 % siltclay). About 70 % of the area (represented by 21 sites) had sediment total organic carbon (TOC) concentrations < 5 mg/g and all but one site (located in Stellwagen Basin) had levels of TOC < 20 mg/g, which is well below the range potentially harmful to benthic fauna (> 50 mg/g). Surface salinities ranged from 30.6 – 31.5 psu, with the majority of the study region (approximately 80 % of the area) having surface salinities between 30.8 and 31.4 psu. Bottom salinities varied between 32.1 and 32.5 psu, with bottom salinities at all sites having values above the range of surface salinities. Surface-water temperatures varied between 12.1 and 16.8 ºC, while near-bottom waters ranged in temperature from 4.4 – 6.2 ºC. An index of density stratification (Δσt) indicated that the waters of SBNMS were stratified at the time of sampling. Values of Δσt at 29 of the 30 sites sampled in this study (96.7 % of the study area) varied from 2.1 – 3.2, which is within the range considered to be indicative of strong vertical stratification (Δσt > 2) and typical of the western Gulf of Maine in summer. Levels of dissolved oxygen (DO) were confined to a fairly narrow range in surface (8.8 – 10.4 mg/L) and bottom (8.5 – 9.6 mg/L) waters throughout the survey area. These levels are within the range considered indicative of good water quality (> 5 mg/L) with respect to DO. None of these waters had DO at low levels (< 2 mg/L) potentially harmful to benthic fauna and fish.
Resumo:
Various reef types worldwide have inconsistent relationships among fish assemblage parameters and benthic characteristics, thus there is a need to identify factors driving assemblage structure specific to each reef type and locale. Limestone ledges are known to be key habitats for bottom fish on the continental shelf of the southeastern USA, however, the specific factors that link them to fish assemblages have not been quantified. Bottom fishes and habitat characteristics on ledges were surveyed at a study site located centrally in the southeastern USA continental shelf. Species richness, diversity, abundance, and biomass of fish were higher at ledges than on flat bottom. Species richness, abundance, and biomass of fish were well explained by ledge variables including percent cover of sessile invertebrates, total height, and height of undercut recesses. Multivariate analyses based on biomass of individual species at ledges revealed two fish assemblages associated with four ledge types. One assemblage was associated with ledges that were tall, heavily colonized with sessile invertebrates, large in area, and did or did not have undercuts. The other assemblage was associated with ledges that were short, not undercut, smaller in area, and were or were not heavily colonized by invertebrates. Seafloor classification schemes presently used in the region do not adequately capture hard bottom diversity to identify the location and extent of essential fish habitats for ecological and fisheries purposes. Given that ledges cover only ∼1% to 5% of the southeastern USA continental shelf, they merit the highest levels of consideration in regional research, conservation, and management plans.
Resumo:
The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.
Resumo:
We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.