33 resultados para stolen generations
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
This is the River Camel Salmon Action Plan Final document produced by the Environment Agency in 2002. This final Salmon Action Plan (SAP) for the River Camel catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Camel salmon stock. The actions presented within this Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. An attempt has been made to cost these actions, identify possible sources of funding and to provide a timescale for action. This Action Plan aims to promote long term collaboration and co-operation between the Agency and other interested parties to effectively and efficiently manage the stock of salmon on the River Camel.
Resumo:
This is the River Fowey Salmon Action Plan Final document produced by the Environment Agency in 2003. This final Salmon Action Plan (SAP) for the River Fowey catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Fowey salmon stock. The actions presented within this final Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. The main objective of the Fowey SAP therefore, is to maintain, improve and develop the Fowey salmon stocks to a sustainable level that, on the basis of historic catch records, the catchment can clearly support. Although the Fowey is passing its conservation limit, the consultees felt very strongly that there were two major factors limiting the salmon stock of the River Fowey- the overgrazing of Bodmin Moor and the use of the catchment for water supply by South West Water.
Resumo:
This is the River Lynher Salmon Action Plan Final document produced by the Environment Agency in 1999. This final Salmon Action Plan (SAP) for the River Lynher catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Lynher salmon stock. The actions presented within this final Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. The River Lynher salmon stock has suffered two periods of spawning target failure within the past ten years. This assessment can only be estimated and in this case is likely to be dependent on river flow and the availability of salmon to the rods as only rod catch is used in the compliance assessment.
Resumo:
This is the River Plym Salmon Action Plan Final document produced by the Environment Agency in 2003. This final Salmon Action Plan (SAP) for the River Plym catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Lynher salmon stock. These issues and actions follow on from the detailed analysis of the catchment, which is presented in the River Plym SAP Consultation document.The actions presented within this final Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. The main objective of the River Plym SAP therefore, is to maintain, improve and develop the River Plym salmon stocks to a sustainable level that, on the basis of historic catch records, the catchment can clearly support. The River Plym has failed to pass its conservation limit since 1996, and the consultees felt very strongly that there were three major factors limiting the salmon stock of the River Plym.
Resumo:
This is the River Tavy Salmon Action Plan Final document produced by the Environment Agency in 2000. This final Salmon Action Plan (SAP) for the River Tavy catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Tavy salmon stock. The actions presented within this Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. An attempt has been made to cost these actions, identify possible sources of funding and to provide a timescale for action. This Action Plan aims to promote long term collaboration and co-operation between the Agency and other interested parties to effectively and efficiently manage the stock of salmon on the River Tavy.
Resumo:
This is the River Yealm Salmon Action Plan Final document produced by the Environment Agency in 2003. This final Salmon Action Plan (SAP) for the River Yealm catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Yealm salmon stock. The actions presented within this Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. An attempt has been made to cost these actions, identify possible sources of funding and to provide a timescale for action. The main objective of the River Yealm SAP is to maintain, improve and develop the River Yealm salmon stocks to a sustainable level that, on the basis of historic catch records, the catchment can clearly support.
Resumo:
This is the River Lyn Salmon Action Plan Final document produced by the Environment Agency in 2003. This final Salmon Action Plan (SAP) for the River Lyn catchment has been produced after consideration of feedback from external consultation. It provides a list of the agreed issues and actions for the next five years to maintain and improve the River Lyn salmon stock. The actions presented within this Salmon Action Plan clarify the important issues and factors currently limiting the salmon stock on the river. The resolution of these issues should ensure that a sustainable salmon population will be maintained for future generations. An attempt has been made to cost these actions, identify possible sources of funding and to provide a timescale for action. This SAP aims also to promote long term collaboration between the Agency and other interested parties in managing the River Lyn salmon stock and fisheries.
Resumo:
The modern fishery for Tilefish (Lopholatilus chamaeleonticeps) developed during the 1970s, offshore of southern New England, in the western North Atlantic Ocean. The population quickly became over exploited, with documented declines in catch rates and changes in demographic traits. In an earlier study, median size at maturity (L50) of males declined from 62.6 to 38.6 cm fork length (FL) and median age at maturity (A50) of males declined from 7.1 to 4.6 years between 1978 and 1982. As part of a cooperative research effort to improve the data-limited Tilefish assessment, we updated maturity parameter estimates through the use of an otolith aging method and macroscopic and microscopic evaluations of gonads. The vital rates for this species have continued to change, particularly for males. By 2008, male L50 and A50 had largely rebounded, to 54.1 cm FL and 5.9 years. Changes in female reproductive schedules were less variable among years, but the smallest L50 and youngest A50 were recorded in 2008. Tilefish are dimorphic, where the largest fish are male, and male spawning success is postulated to be socially mediated. These traits may explain the initial rapid decline and the subsequent rebound in male L50 and A50 and less dramatic effects on females. Other factors that likely contribute to the dynamics of maturity parameter estimates are the relatively short period of overfishing and the amount of time since efforts to rebuild this fishery began, as measured in numbers of generations. This study also confirms the gonochoristic sexual pattern of the northern stock, and it reveals evidence of age truncation and relatively high proportions of immature Tilefish in the recent catch.
Resumo:
There is nothing mysterious about how coastal rivers, their estuaries, and their relationship with the sea all work to satisfy many of our greatest needs, including drinkable water, fish and shellfish, and soils essential for sustaining the production of food and fiber. Nor are the methods that have proved successful in the protection and restoration of watershed health difficult to understand. It is difficult, however, to imagine how we are to survive without healthy watersheds. Each watershed along California’s coast shows signs of increasing abuse from road construction and maintenance, livestock grazing, residential development, timber harvesting, and a dozen other human activities. In some cases whole streams have simply been wiped away. This document has been created to guide and support every person in the community, from homemaker to elected official, who wants her or his watershed to provide clean water, harvestable fish resources and other proof that life in the watershed cannot only be maintained but also enjoyed. It is based on years of experience with watershed protection and restoration in California. If citizen involvement is to be effective, it must draw not only on scientific knowledge but also on an understanding of how to translate individual views into commitments and capable group action. This guide briefly reviews the condition of California’s coastal watersheds, identifies the kinds of concerns that have led citizens to successful watershed protection efforts, explains why citizen, in addition to government, effort is essential for watershed protection and restoration to succeed, and puts in the reader’s hands both the technical and organizational “tools of the trade” in the hope that those who use this guide will be encouraged to join in efforts to make their watershed serve this and future generations better.
National Centers for Coastal Ocean Science Coastal Ecosystem Assessment Program: a manual of methods
Resumo:
Environmental managers strive to preserve natural resources for future generations but have limited decision-making tools to define ecosystem health. Many programs offer relevant broad-scale, environmental policy information on regional ecosystem health. These programs provide evidence of environmental condition and change, but lack connections between local impacts and direct effects on living resources. To address this need, the National Oceanic and Atmospheric Administration/National Ocean Service (NOAA/NOS) Cooperative Oxford Laboratory (COL), in cooperation with federal, state, and academic partners, implemented an integrated biotic ecosystem assessment on a sub-watershed 14-digit Hydrologic Unit Code (HUD) scale in Chesapeake Bay. The goals of this effort were to 1) establish a suite of bioindicators that are sensitive to ecosystem change, 2) establish the effects of varying land-use patterns on water quality and the subsequent health of living resources, 3) communicate these findings to local decision-makers, and 4) evaluate the success of management decisions in these systems. To establish indicators, three sub-watersheds were chosen based on statistical analysis of land-use patterns to represent a gradient from developed to agricultural. The Magothy (developed), Corsica (agricultural), and Rhode (reference) Rivers were identified. A random stratified design was developed based on depth (2m contour) and river mile. Sampling approaches were coordinated within this structure to allow for robust system comparisons. The sampling approach was hierarchal, with metrics chosen to represent a range from community to cellular level responses across multiple organisms. This approach allowed for the identification of sub-lethal stressors, and assessment of their impact on the organism and subsequently the population. Fish, crabs, clams, oysters, benthic organisms, and bacteria were targeted, as each occupies a separate ecological niche and may respond dissimilarly to environmental stressors. Particular attention was focused on the use of pathobiology as a tool for assessing environmental condition. By integrating the biotic component with water quality, sediment indices, and land- use information, this holistic evaluation of ecosystem health will provide management entities with information needed to inform local decision-making processes and establish benchmarks for future restoration efforts.
Resumo:
Skin disease occurs frequently in many cetacean species across the globe; methods to categorize lesions have relied on photo-identification (photo-id), stranding, and bycatch data. The current study used photo-id data from four sampling months during 2009 to estimate skin lesion prevalence and type occurring on bottlenose dolphins (Tursiops truncatus) from three sites along the southeast United States coast [Sarasota Bay, FL (SSB); near Brunswick and Sapelo Island, GA (BSG); and near Charleston, SC (CHS)]. The prevalence of lesions was highest among BSG dolphins (P=0.587) and lowest in SSB (P=0.380), and the overall prevalence was significantly different among all sites (p<0.0167). Logistic regression modeling revealed a significant reduction in the odds of lesion occurrence for increasing water temperatures (OR=0.92; 95%CI:0.906-0.938) and a significantly increased odds of lesion occurrence for BSG dolphins (OR=1.39; 95%CI:1.203-1.614). Approximately one-third of the lesioned dolphins from each site presented with multiple types, and population differences in lesion type occurrence were observed (p<0.05). Lesions on stranded dolphins were sampled to determine the etiology of different lesion types, which included three visually distinct samples positive for herpesvirus. Although generally considered non-fatal, skin disease may be indicative of animal health or exposure to anthropogenic or environmental threats, and photo-id data provide an efficient and cost-effective approach to document the occurrence of skin lesions in free-ranging populations.
Resumo:
The Virginia Aquarium & Marine Science Center Foundation’s Stranding Response Program (VAQS) was awarded a grant in 2008 to conduct life history analysis on over 10 years of Tursiops truncatus teeth and gonad samples from stranded animals in Virginia. A major part of this collaborative grant included a workshop involving life historians from Hubbs-Sea World Research Institute (HSWRI), NOS, Texas A & M University (TAMU), and University of North Carolina Wilmington (UNCW). The workshop was held at the NOAA Center for Coastal Environmental Health & Biomolecular Research in Charleston, SC on 7-9 July 2009. The workshop convened to 1) address current practices among the groups conducting life history analysis, 2) decide on protocols to follow for the collaborative Prescott grant between VAQS and HSWRI, 3) demonstrate tissue preparation techniques and discuss shortcuts and pitfalls, 4) demonstrate data collection from prepared testes, ovaries, and teeth, and 5) discuss data analysis and prepare an outline and timeline for a future manuscript. The workshop concluded with discussions concerning the current collaborative Tursiops Life History Prescott grant award and the beginnings of a collaborative Prescott proposal with members of the Alliance of Marine Mammal Parks and Aquariums to further clarify reproductive analyses. This technical memorandum serves as a record of this workshop.
Resumo:
Intergeneric catla-rohu hybrids were bred through hypophysation and about 5.25 lakh spawn of F2 generations were produced. The rate of survival from fertilized eggs to spawn ranged from 62.5 to 96.4% at 26-30 degree C.
Cumulative inbreeding rate in hatchery-reared indian major carps of Karnataka and Maharashtra states
Resumo:
The state fisheries department hatcheries are the major suppliers of seed to the farmers in Karnataka and Maharashtra. The brood stocks of these hatcheries are genetically closed units. In the present study, effective population size and cumulative inbreeding rates were estimated. The cumulative inbreeding rates ranged from 2.69 to 13.75, 8.63 to 15.21 and 3.02 to 5.88 per cent for catla, mrigal and rohu, respectively, in Karnataka state hatcheries. In Maharashtra, the cumulative inbreeding rates for catla ranged from 7.81 to 39.34 per cent and it was 5.84 to 14.09 and 2.46 to 10.20 per cent for mrigal and rohu, respectively. To estimate the inbreeding rates in future generations, predictive models were developed using linear regression, and polynomial and power equations separately for each hatchery. Their multiple correlation and standard errors suggested that simple linear regression can predict the future inbreeding rate efficiently.