28 resultados para service management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unremitting waves and occasional storms bring dynamic forces to bear on the coast. Sediment flux results in various patterns of erosion and accretion, with an overwhelming majority (80 to 90 percent) of coastline in the eastern U.S. exhibiting net erosion in recent decades. Climate change threatens to increase the intensity of storms and raise sea level 18 to 59 centimeters over the next century. Following a lengthy tradition of economic models for natural resource management, this paper provides a dynamic optimization model for managing coastal erosion and explores the types of data necessary to employ the model for normative policy analysis. The model conceptualizes benefits of beach and dune sediments as service flows accruing to nearby residential property owners, local businesses, recreational beach users, and perhaps others. Benefits can also include improvements in habitat for beach- and dune-dependent plant and animal species. The costs of maintaining beach sediment in the presence of coastal erosion include expenditures on dredging, pumping, and placing sand on the beach to maintain width and height. Other costs can include negative impacts on the nearshore environment. Employing these constructs, an optimal control model is specified that provides a framework for identifying the conditions under which beach replenishment enhances economic welfare and an optimal schedule for replenishment can be derived under a constant sea level and erosion rate (short term) as well as an increasing sea level and erosion rate (long term). Under some simplifying assumptions, the conceptual framework can examine the time horizon of management responses under sea level rise, identifying the timing of shift to passive management (shoreline retreat) and exploring factors that influence this potential shift. (PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In January 2006 the Maumee Remedial Action Plan (RAP) Committee submitted a State II Watershed Restoration Plan for the Maumee River Great Lakes Area of Concern (AOC) area located in NW Ohio to the State of Ohio for review and endorsement (MRAC, 2006). The plan was created in order to fulfill the requirements, needs and/or use of five water quality programs including: Ohio Department of Natural Resources (DNR) Watershed Coordinator Program; Ohio EPA Great Lakes RAP Program; Ohio DNR Coastal Non-point Source Pollution Control Program; Ohio EPA Total Maximum Daily Load Program; and US Fish & Wildlife Service Natural Resources Damage Program. The plan is intended to serve as a comprehensive regional management approach for all jurisdictions, agencies, organizations, and individuals who are working to restore the watershed, waterways and associated coastal zone. The plan includes: background information and mapping regarding hydrology, geology, ecoregions, and land use, and identifies key causes and sources for water quality concerns within the six 11-digit hydrological units (HUCs), and one large river unit that comprise the Maumee AOC. Tables were also prepared that contains detailed project lists for each major watershed and was organized to facilitate the prioritization of research and planning efforts. Also key to the plan and project tables is a reference to the Ohio DNR Coastal Management Measures that may benefit from the implementation of an identified project. This paper will examine the development of the measures and their importance for coastal management and watershed planning in the Maumee AOC. (PDF contains 4 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper summarizes current information on the American shad, Alosa sapidissima, and describes the species and its fishery. Emphasis is placed on (1) life history of the fish, (2) condition of the fishery by State and water areas in 1960 compared to 1896 when the last comprehensive description was made, (3) factors responsible for decline in abundance, and (4) management measures. The shad fishery has changed little over the past three-quarters of a century, except in magnitude of yield. Types of shad-fishing gear have remained relatively unchanged, but many improvements have been made in fishing techniques, mostly to achieve economy. In 1896 the estimated catch was more than 50 million pounds. New Jersey ranked first in production with about 14 million pounds, and Virginia second with 11 million pounds. In 1960 the estimated catch was slightly more than 8 million pounds. Maryland ranked first in production with slightly more than 1.5 million pounds, Virginia second with slightly less than 1.4 million pounds, and North Carolina third with about 1.3 million pounds. Biological and economic factors blamed for the decline in shad abundance, such as physical changes in the environment, construction of dams, pollution, over-fishing, and natural cycles of abundance, are discussed. Also discussed are methods used for the rehabilitation and management of the fishery, such as artificial propagation, installation of fish-passage facilities at impoundments, and fishing regulations. With our present knowledge, we can manage individual shad populations; but, we probably cannot restore the shad to its former peak of abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the North Pacific Ocean, an ecosystem-based fishery management approach has been adopted. A significant objective of this approach is to reduce interactions between fishery-related activities and protected species. We review management measures developed by the North Pacific Fishery Management Council and the National Marine Fisheries Service to reduce effects of the groundfish fisheries off Alaska on marine mammals and seabirds, while continuing to provide economic opportunities for fishery participants. Direct measures have been taken to mitigate known fishery impacts, and precautionary measures have been taken for species with potential (but no documented) interactions with the groundfish fisheries. Area closures limit disturbance to marine mammals at rookeries and haulouts, protect sensitive benthic habitat, and reduce potential competition for prey resources. Temporal and spatial dispersion of catches reduce the localized impact of fishery removals. Seabird avoidance measures have been implemented through collaboration with fishery participants and have been highly successful in reducing seabird bycatch. Finally, a comprehensive observer monitoring program provides data on the location and extent of bycatch of marine mammals and seabirds. These measures provide managers with the flexibility to adapt to changes in the status of protected species and evolving conditions in the fisheries. This review should be useful to fishery managers as an example of an ecosystem-based approach to protected species management that is adaptive and accounts for multiple objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States has managed and analyzed its marine fisheries since 1871, and since 1970 via NOAA’s National Marine Fisheries Service (NMFS). As the primary directive moved from aiding fishermen in expanding their operations emphasizing conservation, the government over time recognized that management involves influencing people not fish, and has hired social scientists to complement the biologists who assess fish populations. This change has not always been smooth. We use archival documents and oral histories to trace the development of sociocultural analytic capabilities within NMFS and describe future plans for growing the program. Four points are made. First, NMFS has created the best developed social science program in NOAA. Second, established institutions change slowly; achieving the social science presence in NMFS has taken over 25 years. Third, change needs visionaries and champions with both tenacity and opportunity. Fourth, social science data collection and research helps in making fishery management decisions, but they have also been useful in evaluating the impact and helping with the recovery from Hurricane Katrina. Good work finds other uses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oysters, Crassostrea virginica, and softshell clams, Mya arenaria, along the Massachusetts coast were harvested by European colonists beginning in the 1600’s. By the 1700’s, official Commonwealth rules were established to regulate their harvests. In the final quarter of the 1800’s, commercial fishermen began harvesting northern quahogs, Mercenaria mercenaria, and northern bay scallops, Argopecten irradians irradians, and regulations established by the Massachusetts Legislature were applied to their harvests also. Constables (also termed wardens), whose salaries were paid by the local towns, enforced the regulations, which centered on restricting harvests to certain seasons, preventing seed from being taken, and personal daily limits on harvests. In 1933, the Massachusetts Legislature turned over shellfisheries management to individual towns. Local constables (wardens) enforced the rules. In the 1970’s, the Massachusetts Shellfish Officers Association was formed, and was officially incorporated in 2000, to help the constables deal with increasing environmental problems in estuaries where fishermen harvest mollusks. The constables’ stewardship of the molluscan resources and the estuarine environments and promotion of the fisheries has become increasingly complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data quantifying various aspects of the Corps of Engineers wetland regulatory program in Louisiana from 1980 through 1990 are presented. The National Marine Fisheries Service (NMFS) habitat conservation efforts for this time period are described and averages involved delineated. From 1980 through 1990, NMFS reviewed 14,259 public notices to dredge, fill, or impound wetlands in Louisiana and provided recommendations to the Corps on 962 projects which proposed to impact over 600,000 acres of tidally influenced wetlands. NMFS recommended that impacts to about 279,000 acres be avoided and that more than 150,000 acres of compensatory mitigation be provided. During this period, marsh management projects proposed impounding over 197,000 acres of wetlands. On a permit by permit basis, 43% of NMFS recommendations were accepted, 34% were partially accepted, and 23% were rejected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dataq uantifying the area of habitat affected by Federal programs that regulate development in coastal zones of the southeastern United States are provided for 1988. The National Marine Fisheries Service (NMFS) made recommendations on 3,935 proposals requiring Federal permits or licenses to alter wetlands. A survey of 977 of these activities revealed that 359,876 acres of wetlands that support fishery resources under NMFS purview were proposed for some type of alteration or manipulation. Almost 95 percent of this acreage was for impounding andl/or manipulation of water levels in Louisiana marshes. The NMFS did not object to alteration of 173,284 acres and recommended the conservation of 186,592 acres. To offset habitat losses, 1,827 acres of mitigation were recommended by the NMFS or proposed by applicants and/or the Corps of Engineers (COE). From 1981 to 1988 the NMFS has provided in depth analyses on 8,385 projects proposing the alteration of at least 656,377 acres of wetlands. A follow-up survey on the disposition of 339 permits handled by the COE during 1988 revealed that the COE accepted NMFS recommendations on 68 percent. On a permit-by-permit basis, 13 percent of NMFS recommendations were partially accepted, 17 percent were completely rejected, and 2 percent were withdrawn. The permit requests tracked by the NMFS proposed the alteration of 2,674 acres of wetlands. The COE issued permits to alter 847 acres or 32 percent of the amount proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existing data collection and analysis programs to provide an adequate knowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gap Analysis of Marine Ecosystem Data project is a review of available geospatial data which can assist in marine natural resource management for eight park units. The project includes the collection of geospatial information and its incorporation in a single consistent geodatabase format. The project also includes a mapping portal which can be seen at: http://ccma.nos.noaa.gov/explorer/gapanalysis/gap_analysis.html In addition to the collection of geospatial information and mapping portal we have conducted a gap analysis of a standard suite of available information for managing marine resources. Additional gap were identified by interviewing park service staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On July 12-15, 2008, researchers and resource managers met in Jupiter, Florida to discuss and review the state of knowledge regarding mesophotic coral ecosystems, develop a working definition for these ecosystems, identify critical resource management information needs, and develop a Mesophotic Coral Ecosystems Research Strategy to assist the U.S. National Oceanic and Atmospheric Administration (NOAA) and other agencies and institutions in their research prioritization and strategic planning for mesophotic coral ecosystems. Workshop participants included representatives from international, Federal, and state governments; academia; and nongovernmental organizations. The Mesophotic Coral Ecosystems Workshop was hosted by the Perry Institute for Marine Science (PIMS) and organized by NOAA and the U.S. Geological Survey (USGS). The workshop goals, objectives, schedule, and products were governed by a Steering Committee consisting of members from NOAA (National Centers for Coastal Ocean Science’s Center for Sponsored Coastal Ocean Research, the Office of Ocean Exploration and Research’s NOAA Undersea Research Program, and the National Marine Fisheries Service), USGS, PIMS, the Caribbean Coral Reef Institute, and the Bishop Museum.