19 resultados para ribosomal spacer DNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolutionary associations between closely related fish species, both contemporary and historical, are frequently assessed by using molecular markers, such as microsatellites. Here, the presence and variability of microsatellite loci in two closely related species of marine fishes, sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus), are explored by using heterologous primers from red drum (Sciaenops ocellatus). Data from these loci are used in conjunction with morphological characters and mitochondrial DNA haplotypes to explore the extent of genetic exchange between species offshore of Galveston Bay, TX. Despite seasonal overlap in distribution, low genetic divergence at microsatellite loci, and similar life history parameters of C. arenarius and C. nothus, all three data sets indicated that hybridization between these species does not occur or occurs only rarely and that historical admixture in Galveston Bay after divergence between these species was unlikely. These results shed light upon the evolutionary history of these fishes and highlight the genetic properties of each species that are influenced by their life history and ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular markers based on mitochondrial DNA (mtDNA) are extensively used to study genetic relationships. mtDNA has been used in phylogenetic studies to understand the evolutionary history of species because it is maternally inherited and is not subject to genetic recombination (Gyllensten et al., 1991). The high mutation rate of mtDNA makes it a useful tool for differentiating between closely related species (Brown et al., 1979)—a tool that is especially important when significant variations occur between species, but not within species (Hill et al., 2001; Blair et al., 2006; Chow et al., 2006a).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation in the allele frequencies of five microsatellite loci was surveyed in 1256 individual spotted seatrout (Cynoscion nebulosus) obtained from 12 bays and estuaries from Laguna Madre, Texas, to Charlotte Harbor, Florida, to St. John’s River on the Florida Atlantic Coast. Texas and Louisiana collection sites were resampled each year for two to four years (1998−2001). Genetic differentiation was observed. Spotted seatrout from Florida waters were strongly differentiated from spotted seatrout collected in Louisiana and Texas. The greatest genetic discontinuity was observed between Tampa Bay and Charlotte Harbor, and Charlotte Harbor seatrout were most similar to Atlantic Coast spotted seatrout. Texas and Louisiana samples were not strongly structured within the northwestern Gulf of Mexico and there was little evidence of temporal differentiation within bays. These findings are contrary to those of earlier analyses with allozymes and mitochondrial DNA (mtDNA) where evidence of spatial differentiation was found for spotted seatrout resident on the Texas coast. The differences in genetic structure observed among these markers may reflect differences in response to selective pressure, or may be due to differences in underlying genetic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA techniques are increasingly used as diagnostic tools in many fields and venues. In particular, a relatively new application is its use as a check for proper advertisement in markets and on restaurant menus. The identification of fish from markets and restaurants is a growing problem because economic practices often render it cost-effective to substitute one species for another. DNA sequences that are diagnostic for many commercially important fishes are now documented on public databases, such as the National Center for Biotechnology Information’s (NCBI) GenBank.1 It is now possible for most genetics laboratories to identify the species from which a tissue sample was taken without sequencing all the possible taxa it might represent.