32 resultados para reductions
Resumo:
This paper reviews the effectiveness of Gammarus scope for growth (SfG) as an indicator of water quality. In addition, the link between physiological changes and effects at higher levels of biological organisation is addressed. Exposure to a range of toxicants resulted in decreases in Gammarus SfG which were qualitatively and quantitatively correlated with subsequent reductions in growth and reproduction. Reductions in SfG were due principally to a decrease in energy intake (i.e. feeding rate) rather than an increase in energy expenditure. Gammarus pulex is an important shredder in many stream communities and stressed-induced reductions in its feeding activity were correlated with reductions in the processing of leaf litter by a semi-natural stream community. Hence, changes in the physiological energetics of Gammarus provide a general and sensitive indicator of stress which can be linked to effects at higher levels of biological organisation. Under long-term stress and hence prolonged reductions in SfG, animals may adapt by modifying their life-history strategies and producing fewer, larger offspring.
Resumo:
A summary of results obtained from 1969 to 1977 is given. It concerns the biology of the species (ecology and distribution of the adults, behaviour and diel variation of catch rates, reproduction and larval migration, juveniles migration and recruitment at sea, sexual maturity, growth and mortality by marking experiments) and the history of the fishery (catches, efforts, seasonal variations of catch rates). The combined use of a dynamic pool model of Ricker and a production model of Fox leads to the evaluation of the potential of the stock. The simulation of different and combined fishery strategies on adults at sea and juveniles in lagoons, allows the evaluation of the consequences (in yield, value, biomass and potential fecundity) of the different proposed management procedures (reductions in fishing effort, closed seasons on both fisheries).
Resumo:
The hypothesis that heavy fishing pressure has led to changes in the biological characteristics of the estuary cobbler (Cnidoglanis macrocephalus) was tested in a large seasonally open estuary in southwestern Australia, where this species completes its life cycle and is the most valuable commercial fish species. Comparisons were made between seasonal data collected for this plotosid (eeltail catfish) in Wilson Inlet during 2005–08 and those recorded with the same fishery-independent sampling regime during 1987–89. These comparisons show that the proportions of larger and older individuals and the catch rates in the more recent period were far lower, i.e., they constituted reductions of 40% for fish ≥430 mm total length, 62% for fish ≥4 years of age, and 80% for catch rate. In addition, total mortality and fishing-induced mortality estimates increased by factors of ~2 and 2.5, respectively. The indications that the abundance and proportion of older C. macrocephalus declined between the two periods are consistent with the perception of long-term commercial fishermen and their shift toward using a smaller maximum gill net mesh to target this species. The sustained heavy fishing pressure on C. macrocephalus between 1987–89 and 2005–08 was accompanied by a marked reduction in length and age at maturity of this species. The shift in probabilistic maturation reaction norms toward smaller fish in 2005–08 and the lack of a conspicuous change in growth between the two periods indicate that the maturity changes were related to fishery-induced evolution rather than to compensatory responses to reduced fish densities.
Resumo:
Pacific cod (Gadus macrocephalus) is an important component of fisheries and food webs in the North Pacific Ocean and Bering Sea. However, vital rates of early life stages of this species have yet to be described in detail. We determined the thermal sensitivity of growth rates of embryos, preflexion and postflexion larvae, and postsettlement juveniles. Growth rates (length and mass) at each ontogenetic stage were measured in three replicate tanks at four to five temperatures. Nonlinear regression was used to obtain parameters for independent stage-specific growth functions and a unified size- and temperature-dependent growth function. Specific growth rates increased with temperature at all stages and generally decreased with increases in body size. However, these analyses revealed a departure from a strict size-based allometry in growth patterns, as reduced growth rates were observed among preflexion larvae: the reduction in specific growth rate between embryos and free-swimming larvae was greater than expected based on body size differences. Growth reductions in the preflexion larvae appear to be associated with increased metabolic rates and the transition from endogenous to exogenous feeding. In future studies, experiments should be integrated across life transitions to more clearly define intrinsic ontogenetic and size-dependent growth patterns because these are critical for evaluations of spatial and temporal variation in habitat quality.
Resumo:
Estimates of incidental marine mammal, sea turtle, and seabird mortality in the California drift gillnet fishery for broadbill swordfish, Xiphias gladius, and common thresher shark, Alopias vulpinus, are summarized for the 7-year period, 1996 to 2002. Fishery observer coverage was 19% over the period (3,369 days observed/17,649 days fished). An experiment to test the effectiveness of acoustic pingers on reducing marine mammal entanglements in this fishery began in 1996 and resulted in statistically significant reductions in marine mammal bycatch. The most commonly entangled marine mammal species were the short-beaked common dolphin, Delphinus delphis; California sea lion, Zalophus californianus; and northern right whale dolphin, Lissodelphis borealis. Estimated mortality by species (CV and observed mortality in parentheses) from 1996 to 2002 is 861 (0.11, 133) short-beaked common dolphins; 553 (0.16, 103) California sea lions; 151 (0.25, 31) northern right whale dolphins; 150 (0.21, 27) northern elephant seals, Mirounga angustirostris; 54 (0.41, 10) long-beaked common dolphins, Delphinus capensis; 44 (0.53, 6) Dall’s porpoise, Phocoenoides dalli; 19 (0.60, 5) Risso’s dolphins, Grampus griseus; 11 (0.71, 2) gray whales, Eschrichtius robustus; 7 (0.83, 2) sperm whales, Physeter macrocephalus; 7 (0.96, 1) short-finned pilot whales, Globicephala macrorhychus; 12 (1.06, 1) minke whales, Balaenoptera acutorostrata; 5 (1.05, 1) fin whales, Balaenoptera physalus; 11 (0.68, 2) unidentified pinnipeds; 33 (0.52, 4) leatherback turtles, Dermochelys coriacea; 18 (0.57, 3) loggerhead turtles, Caretta caretta; 13 (0.73, 3) northern fulmars, Fulmarus glacialis; and 6 (0.86, 2) unidentified birds.
Resumo:
ABSTRACT—Bycatch mortality of Pacific halibut, Hippoglossus stenolepis, in nontarget fisheries is composed primarily of immature fish, and substantial reductions in yield to directed halibut fisheries result from this bycatch. Distant-water bottomtrawl fleets operating off the North American coast, beginning in the mid 1960’s, experienced bycatch mortality of over 12,000 t annually. Substantial progress on reducing this bycatch was not achieved until the of extension fisheries jurisdictions by the United States and Canada in 1977. Bycatch began to increase again during the expansion of domestic catching capacity for groundfish, and by the early 1990’s it had returned to levels seen during the period of foreign fishing. Collaborative action by Canada and the United States through the International Pacific Halibut Commission has resulted in substantial reductions in bycatch mortality in some areas. Methods of control have operated at global, fleet, and individual vessel levels. We evaluate the hierarchy of effectiveness for these control measures and identify regulatory needs for optimum effects. New monitoring technologies offer the promise of more cost-effective approaches to bycatch reduction.
Resumo:
This paper uses an industrial organization approach to trace the impact on Madeira Beach, Fla., and surrounding areas of a 1-month closure of the grouper fishery from 15 February 2001 to 15 March 2001. A proposed 2-month closure is also evaluated. This approach identifies the economic relationships in the industry based on both product and place. The empirical analysis measures the losses in employment and income, information that enriches social and anthropological research on fishery-dependent communities. The 1-month closure is estimated to have reduced annual catches landed in Madeira Beach by 9.7–10.1% and annual revenues by 9.3–11.5%. These reductions are associated with a direct loss of about 33 full-time (annualized) jobs and personal income losses between $8 and 12 million in Madeira Beach and Pinellas County over a 10-year period. If the closure occurs for 2 months, annual landings and revenues will be reduced an estimated 17–21% and 20–23%, respectively.
Resumo:
This is the report on the River Ehen salmonid fishery - current status and a summary of fisheries work during the period 1993-1996, produced by the Environment Agency North West in 1997. This report draws together a number of investigations and surveys undertaken following the 1993 Strategic fisheries survey of the River Ehen. It specifically details the historic catch data available for this catchment for both salmon and sea trout and examines the current stock levels based on this data. Concerns over sea trout stock levels are raised and a detailed examination of the possible limiting factors involved is included. Information from surveys on the River Keekle is analysed with reference to its potential for sea trout production both currently and with the proposed clean up on Oatlands tip. Salmon production in the historically acidified River Liza sub catchment is examined along with ways of boosting production further following recent reductions in acidic episodes. Future and current issues and actions required in the catchment are listed along with the responsible party and estimated costs involved.
Resumo:
Puget Sound is one of the largest and most ecologically significant estuaries in the United States, but the status and trends of many of its biological components are not well known. We analyzed a 21-year time series of data from standardized bottom trawl sampling at a single study area to provide the first assessment of population trends of Puget Sound groundfishes after the closure of bottom trawl fisheries. The expected increase in abundance was observed for only 3 of 14 species after this closure, and catch rates of most (10) of the abundant species declined through time. Many of these changes were stepwise (abrupt) rather than gradual, and many stocks exhibited changes in catch rate during the 3-year period from 1997 through 2000. No detectable change was recorded for either temperature or surface salinity over the entire sampling period. The abrupt density reductions that were observed likely do not reflect changes in demographic rates but may instead represent distributional shifts within Puget Sound.
Resumo:
The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.
Resumo:
Coral reefs throughout their circumtropical range are declining at an accelerating rate. Recent predictions indicate that 20% of the world’s reefs have been degraded, another 24% are under imminent risk of collapse, and if current estimates hold, by 2030, 26% of the world’s reefs will be lost (Wilkinson 2004). Recent changes to these ecosystems have included losses of apex predators, reductions of important herbivorous fishes and invertebrates, and precipitous declines in living coral cover, with many reefs now dominated by macroalgae. Causes have been described in broad sweeping terms: global climate change, over-fishing and destructive fishing, land-based sources of pollution, sedimentation, hurricanes, mass bleaching events and disease. Recognition that corals can succumb to disease was first reported in the early 1970’s. Then it was a unique observation, with relatively few isolated reports until the mid 1990’s. Today disease has spread to over 150 species of coral, reported from 65 countries throughout all of the world’s tropical oceans (WCMC Global Coral Disease Database). While disease continues to increase in frequency and distribution throughout the world, definitive causes of coral diseases have remained elusive for the most part, with reef managers not sufficiently armed to combat it.
Resumo:
Octopuses are commonly taken as bycatch in many trap fisheries for spiny lobsters (Decapoda: Palinuridae) and can cause significant levels of within-trap lobster mortality. This article describes spatiotemporal patterns for Maori octopus (Octopus maorum) catch rates and rock lobster (Jasus edwardsii) mortality rates and examines factors that are associated with within-trap lobster mortality in the South Australian rock lobster fishery (SARLF). Since 1983, between 38,000 and 119,000 octopuses per annum have been taken in SARLF traps. Catch rates have fluctuated between 2.2 and 6.2 octopus/100 trap-lifts each day. There is no evidence to suggest that catch rates have declined or that this level of bycatch is unsustainable. Over the last five years, approximately 240,000 lobsters per annum have been killed in traps, representing ~4% of the total catch. Field studies show that over 98% of within-trap lobster mortality is attributable to octopus predation. Lobster mortality rates are positively correlated with the catch rates of octopus. The highest octopus catch rates and lobster mortality rates are recorded during summer and in the more productive southern zone of the fishery. In the southern zone, within-trap lobster mortality rates have increased in recent years, apparently in response to the increase in the number of lobsters in traps and the resultant increase in the probability of octopus encountering traps containing one or more lobsters. Lobster mortality rates are also positively correlated with soak-times in the southern zone fishery and with lobster size. Minimizing trap soak-times is one method currently available for reducing lobster mortality rates. More significant reductions in the rates of within-trap lobster mortality may require a change in the design of lobster traps.
Resumo:
Management of West Coast groundfish resources by the Pacific Fishery Management Council involves Federal government and academic scientists conducting stock assessments, generally using the stock synthesis framework, applying the 40-10 rule to determine harvest guidelines for resources that are not overfished and conducting rebuilding analyses to determine harvest guidelines for resources that have been designated as overfished. However, this management system has not been evaluated in terms of its ability to satisfy the National Standard 1 goals of the Sustainable Fisheries Act. A Monte Carlo simulation framework is therefore outlined that can be used to make such evaluations. Based on simulations tailored to a situation similar to that of managing the widow rockfish (Sebastes entomelas) resource, it is shown that catches during recovery and thereafter are likely to be highly variable (up to ±30% from one year to the next). Such variability is far greater than has been presented to the decision makers to date. Reductions in interannual variability in catches through additional data collection are, however, unlikely. Rather, improved performance will probably arise from better methods for predicting future recruitment. Rebuilding analyses include quantities such as the year to which the desired probability of recovery applies. The estimates of such quantities are, however, very poorly determined.
Resumo:
Status of the southeastern U.S. stock of red porgy (Pagrus pagrus) was estimated from fishery-dependent and fishery-independent data, 1972–97. Annual population numbers and fishing mortality rates at age were estimated from virtual population analysis (VPA) calibrated with fishery-independent data. For the VPA, a primary matrix of catch at age was based on age-length keys from fishery-independent samples; an alternate matrix was based on fishery-dependent keys. Additional estimates of stock status were obtained from a surplus-production model, also calibrated with fishery-independent indices of abundance. Results describe a dramatic increase in exploitation of this stock and concomitant decline in abundance. Estimated fully recruited fishing mortality rate (F) from the primary catch matrix increased from 0.10/yr in 1975 to 0.88/yr in 1997, and estimated static spawning potential ratio (SPR) declined from about 67% to about 18%. Estimated recruitment to age 1 declined from a peak of 3.0 million fish in 1973–74 to 94,000 fish in 1997, a decline of 96.9%. Estimated spawning-stock biomass declined from a peak of 3530 t in 1979 to 397 t in 1997, a decline of 88.8%. Results from the alternate catch matrix were similar. Retrospective patterns in the VPA suggest that the future estimates of this population decline will be severe, but may be less than present estimates. Long-term and marked declines in recruitment, spawning stock, and catch per unit of effort (both fishery-derived and fishery-independent)are consistent with severe overexploitation during a period of reduced recruitment. Although F prior to 1995 has generally been estimated at or below the current management criterion for overfishing (F equivalent to SPR=35%), the recent spawning-stock biomass is well below the biomass that could support maximum sustainable yield. Significant reductions in fishing mortality will be needed for rebuilding the southeastern U.S. stock.
Resumo:
One of the most promising prophylactic agents being tested to control Penaeus monodon larval diseases is furanace (6-hydroxymethyl-2 2(5-nitro-2-furyl) vinyl pyridine). To evaluate further its suitability as a chemotherapeutic agent, its effects on the population growth of Chaetoceros calcitrans, the diatom used as feed for the zoeal stages, was examined. Chaetoceros populations of uniform density (initial density in all runs: 130-141x10 SUP-3 cells /ml) were placed in nine white, circular (382 sq cm), plastic basins. The physio-chemical characteristics of the culture water were as follows: salinity, 28 . 5-30 . 0 ppt; pH, 8 . 62-8 . 72; temperature, 23-25 . 5 degree C; dissolved oxygen, 7 . 1-9 . 3 ppm; nitrate, 0 . 03-0 . 07 ppm; and ammonia, 0 . 005-0 . 03 ppm. Preweighed furanace granules were dissolved in the culture water, with resulting concentrations of 1 and 2 mg/l (3 replicates each). A set of replicates without furanace served as the control. Population counts of the diatom were taken after 2, 4, 6, 8, and 10 hr exposures. After 4 hr, the population decreased in all three levels. The population in 2 mg/l furanace showed the lowest count and that in control the highest. The population means are not statistically different from one another. The results of the study show that the furanace causes reductions in Chaetoceros population at all durations of exposure.