22 resultados para pup calls


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existing data collection and analysis programs to provide an adequate knowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triennial bottom trawl survey data from 1984 to 1996 were used to evaluate changes in the summer distribution of walleye pollock in the western and central Gulf of Alaska. Differences between several age groups of pollock were evaluated. Distribution was examined in relation to several physical characteristics, including bottom depth and distance from land. Interspecies associations were also analyzed with the Bray-Curtis clustering technique to better understand community structure. Our results indicated that although the population numbers decreased, high concentrations of pollock remained in the same areas during 1984–96. However, there was an increase in the number of stations where low-density pollock concentrations of all ages were observed, which resulted in a decrease in mean population density of pollock within the GOA region. Patterns emerging from our data suggested an alternative to Mac-Call’s “basin hypothesis” which states that as population numbers decrease, there should be a contraction of the population range to optimal habitats. During 1984–96 there was a concurrent precipitous decline in Steller sea lions in the Gulf of Alaska. The results of our study suggest that decreases in the mean density of adult pollock, the main food in the Steller sea lion diet, combined with slight changes in the distribution of pollock (age-1 pollock in particular) in the mid-1980s, may have contributed to decreased foraging efficiency in Steller sea lions. Our results support the prevailing conceptual model for pollock ontogeny, although there is evidence that substantial spawning may also occur outside of Shelikof Strait.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tripura is a densely populated small state with meagre water resources. 47.51% of the population is constituted by socio-economically backward, illiterate, orthodox, tribal and scheduled castes. Some of them are nomad and a majority of the rest of the population is refugees from Bangladesh, but almost 100% is fish eater. Settlement of tribes in villages, provision of nutritious food and employment therefore calls for proper utilization of every resource they have. The State is poor in water resources but recently has created 21,636.23 ha of new water area. Tripura is rich in pig population, besides poultry birds. Paddy is the main crop cultivated in arable lands. An integration of livestock raising and land based agriculture with pisciculture practices around mini barrages will help in solving the problems to a great extent. The paper is an attempt to outline the prospects of integration of aquaculture with animal husbandry and land based crop culture in Tripura State.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demersal fish stock of Wadge Bank is one of the important fish resources for both Sri Lanka and India. Sivalingam and Medcof (1957) have given an account of its history, general features and relative productivity. According to records the total fishing effort on the bank had been fluctuating and very recently the number of boats operating on the bank has suddenly increased, and there is a possibility that still more will begin operating on the bank in the near future (Mendis, 1965). The increased fishing effort with the possibility of still further increase calls for proper management practices by those concerned, in order to obtain the maximum sustained yield from the demersal stock. For this purpose a detailed study of the past performance of the fishery is essential. With this in view all records of commercial operations up to 1960 are being analysed by the present author and are to be published in a series. This is the first paper in the series and gives a detailed analysis of the first commercial trawling operations from 1928 to 1935. Since there had been a major break of about 10 years between this and the present fishery this data is being analysed separately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total of 361 caudal fin samples were collected from adult A. stellatus specimens caught in the north Caspian Sea, including specimens from Kazakhstan (Ural River), Russia (Volga River), Azerbaijan (Kura River), specimens caught in the south Caspian Sea including specimens from Fishery Zone 1 (from Astara to Anzali), Fishery Zone 2 (from Anzali to Ramsar), Fishery Zone 3 (from Nowshahr to Babolsar), Fishery Zone 4 (from Miyankaleh to Gomishan) as well as from specimens caught in Turkmenistan (all specimens were collected during the sturgeon stock assessment survey). About 2 g of fin tissue was removed from each caudal fin sample, stored in 96% ethyl alcohol and transferred to the genetic laboratory of the International Sturgeon Research Institute. Genomic DNA was extracted using phenol-chloroform method. The quality and quantity of DNA was assessed using 1% Agarose gel electrophoresis and Polymerase Chain Reaction (PCR) was conducted on the target DNA using 15 paired microsatellite primer. PCR products were electrophoresed on polyacrylamide gels (6%) that were stained using silver nitrate. Electrophoretic patterns and DNA bands were analyzed with BioCapt software. Allele count and frequency, genetic diversity, expected heterozygosity and observed heterozygosity allele number, and the effective allele number, genetic similarity and genetic distance, FST and RST were calculated. The Hardy Wienberg Equilibrium based on X2 and Analysis of Molecular Variance (AMOVA) at 10% confidence level was calculated using the Gene Alex software. Dendrogram for genetic distances and identities were calculated using TFPGA program for any level of the hierarchy. It is evident from the results obtained that the 15 paired primers studied, polymorphism was observed in 10 pairs in 12 loci, while one locus did not produce DNA bands. Mean allele number was 13.6. Mean observed and expected heterozygosity was 0.86 and 0.642, respectively. It was also seen that specimens from all regions were not in Hardy Wienberg Equilibrium in most of the loci (P≤0.001). Highest Fst (0.063) was observed when comparing specimens from Fishery Zone 2 and Fishery Zone 4 (Nm=3.7) and lowest FST (0.028) was observed when comparing specimens from the Volga River and those from the Ural River (8.7). Significant differences (P<0.01) were observed between RST recorded in the specimens studied. Highest genetic distance (0.604) and lowest genetic resemblance (0.547) were observed between specimens from Fishery zones 2 and 4. Lowest genetic distance (0.311) and highest genetic resemblance (0.733) was observed between specimens from Turkmenistan and specimens from Fishery zone 1. Based on the genetic dendrogeram tree derived by applying UPGMA algorithm, A. stellatus specimens from Fishery zone 2 or in other words specimens from the Sepidrud River belong to one cluster which divides into two clusters, one of which includes specimens from Fishery zones 1, 3 and 4 and specimens from Turkmenistan while the other cluster includes specimens from Ural, Volga and Kura Rivers. It is thus evident that the main population of this species belongs to the Sepidrud River. Results obtained from the present study show that at least eight different populations of A. stellatus are found in the north and south Caspian Sea, four of which are known populations including the Ural River population, the Volga River population, the Kura River population and the Sepidrud River populations. The four other populations identified belonging to Fishery zones 1, 3, and 4 and to Turkmenistan are most probably late or early spawners of the spring run and autumn run of each of the major rivers mentioned. Specific markers were also identified for each of the populations identified. The Ural River population can be identified using primers Spl-68, 54b and Spl-104, 163 170, 173, the Volga River population can be identified using primers LS-54b and Spl-104, 170, 173 113a and similarly the population from the Kura River can be identified using primers LS-34, 54b and Spl-163, 173 and that from the Sepidrud River can be identified using primers LS-19, 34, 54b and Spl-105, 113b. This study gives evidence of the presence of different populations of this species and calls for serious measures to be taken to protect the genetic stocks of these populations. Considering that the population of A. stellatus in Fishery zone 2 is an independent population of the Sepidrud River in the Gilan Province, the catch of these fishes in the region needs to be controlled and regulated in order to restore the declining stocks of this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of all the great lakes, Lake Victoria has the highest population concentration on its fringes. This has resulted into serious human impacts on the ecosystem through intense agricultural activities (cultivation, livestock and over fishing), sporadic settlements, urbanization and industrial establishments. The consequences have been loss of animals and plant life, deforestation and general land degradation, pollution, loss of water quality and clean air. Aquatic life has become endangered and less guaranteeing to continued fish production. Awareness workshops and general talks have been done to a few selected communities by the lakes landing sites and in the catchment area to mitigate the deteriorating environmental conditions. Naturally the situation calls for reversal to the increasing stress of the ecosystem. As a result, every water body surveyed put forward some mitigation suggestions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Uganda sector of Lake Victoria occupies 29,580 km2 (43%). The lake used to boast of a multi-species fishery but presently relies on three major species Lates niloticus, Oreochromis niloticus and Rastrineobola argentea. During the past decade the total fish production on the Ugandan sector increased drastically from 17,000 tonnes in 1981 to about 13,000 tonnes 1991, indicating a healthy state of the fishery. This was contributed by a combination of factors including the explosive establishment of the introduced L. niloticus which contributed 60.8% in 1991 and the increase in the number of fishing canoes from 3470 in 1988 to 8000 in 1990. Isolated fishery resources studies carried out in different areas of the lake since 1971 seem, however, to indicate contrary trends in the available stocks and, therefore, the status of the fishery. In the experimental fishery, continued decline in catch rates have been recorded. Similarly, in the commercial fishery catch per unit of effort has been considerably poor (33 kg per canoe during January - March 1992) and the average size of individual fish laRded continued to decline, obviously pointing at possible over-fishing. This, therefore, calls for further urgent research on the available stocks for proper management strategies to be formulated.