37 resultados para potassium channel
Resumo:
Trawling was conducted in the Charleston, South Carolina, shipping channel between May and August during 2004–07 to evaluate loggerhead sea turtle (Caretta caretta) catch rates and demographic distributions. Two hundred and twenty individual loggerheads were captured in 432 trawling events during eight sampling periods lasting 2–10 days each. Catch was analyzed by using a generalized linear model. Data were fitted to a negative binomial distribution with the log of standardized sampling effort (i.e., an hour of sampling with a net head rope length standardized to 30.5 m) for each event treated as an offset term. Among 21 variables, factors, and interactions, five terms were significant in the final model, which accounted for 45% of model deviance. Highly significant differences in catch were noted among sampling periods and sampling locations within the channel, with greatest catch furthest seaward consistent with historical observations. Loggerhead sea turtle catch rates in 2004–07 were greater than in 1991–92 when mandatory use of turtle excluder devices was beginning to be phased in. Concurrent with increased catch rates, loggerheads captured in 2004–07 were larger than in 1991–92. Eighty-five percent of loggerheads captured were ≤75.0 cm straight-line carapace length (nuchal notch to tip of carapace) and there was a 3.9:1 female-to-male bias, consistent with limited data for this location two decades earlier. Only juvenile loggerheads ≤75.0 cm possessed haplotypes other than CC-A01 or CC-A02 that dominate in the region. Six rare and one un-described haplotype were predominantly found in June 2004.
Resumo:
The priority management goal of the National Marine Sanctuaries Program (NMSP) is to protect marine ecosystems and biodiversity. This goal requires an understanding of broad-scale ecological relationships and linkages between marine resources and physical oceanography to support an ecosystem management approach. The Channel Islands National Marine Sanctuary (CINMS) is currently reviewing its management plan and investigating boundary expansion. A management plan study area (henceforth, Study Area) was described that extends from the current boundary north to the mainland, and extends north to Point Sal and south to Point Dume. Six additional boundary concepts were developed that vary in area and include the majority of the Study Area. The NMSP and CINMS partnered with NOAA’s National Centers for Coastal Ocean Science Biogeography Team to conduct a biogeographic assessment to characterize marine resources and oceanographic patterns within and adjacent to the sanctuary. This assessment includes a suite of quantitative spatial and statistical analyses that characterize biological and oceanographic patterns in the marine region from Point Sal to the U.S.-Mexico border. These data were analyzed using an index which evaluates an ecological “cost-benefit” within the proposed boundary concepts and the Study Area. The sanctuary resides in a dynamic setting where two oceanographic regimes meet. Cold northern waters mix with warm southern waters around the Channel Islands creating an area of transition that strongly influences the regions oceanography. In turn, these processes drive the biological distributions within the region. This assessment analyzes bathymetry, benthic substrate, bathymetric life-zones, sea surface temperature, primary production, currents, submerged aquatic vegetation, and kelp in the context of broad-scale patterns and relative to the proposed boundary concepts and the Study Area. Boundary cost-benefit results for these parameters were variable due to their dynamic nature; however, when analyzed in composite the Study Area and Boundary Concept 2 were considered the most favorable. Biological data were collected from numerous resource agencies and university scientists for this assessment. Fish and invertebrate trawl data were used to characterize community structure. Habitat suitability models were developed for 15 species of macroinvertebrates and 11 species of fish that have significant ecological, commercial, or recreational importance in the region and general patterns of ichthyoplankton distribution are described. Six surveys of ship and plane at-sea surveys were used to model marine bird diversity from Point Arena to the U.S.-Mexico border. Additional surveys were utilized to estimate density and colony counts for nine bird species. Critical habitat for western snowy plover and the location of California least tern breeding pairs were also analyzed. At-sea surveys were also used to describe the distribution of 14 species of cetaceans and five species of pinnipeds. Boundary concept cost-benefit indices revealed that Boundary Concept 2 and the Study Area were most favorable for the majority of the species-specific analyses. Boundary Concept 3 was most favorable for bird diversity across the region. Inadequate spatial resolution for fish and invertebrate community data and incompatible sampling effort information for bird and mammal data precluded boundary cost-benefit analysis.
Resumo:
The primary objective of this study was to predict the distribution of mesophotic hard corals in the Au‘au Channel in the Main Hawaiian Islands (MHI). Mesophotic hard corals are light-dependent corals adapted to the low light conditions at approximately 30 to 150 m in depth. Several physical factors potentially influence their spatial distribution, including aragonite saturation, alkalinity, pH, currents, water temperature, hard substrate availability and the availability of light at depth. Mesophotic corals and mesophotic coral ecosystems (MCEs) have increasingly been the subject of scientific study because they are being threatened by a growing number of anthropogenic stressors. They are the focus of this spatial modeling effort because the Hawaiian Islands Humpback Whale National Marine Sanctuary (HIHWNMS) is exploring the expansion of its scope—beyond the protection of the North Pacific Humpback Whale (Megaptera novaeangliae)—to include the conservation and management of these ecosystem components. The present study helps to address this need by examining the distribution of mesophotic corals in the Au‘au Channel region. This area is located between the islands of Maui, Lanai, Molokai and Kahoolawe, and includes parts of the Kealaikahiki, Alalākeiki and Kalohi Channels. It is unique, not only in terms of its geology, but also in terms of its physical oceanography and local weather patterns. Several physical conditions make it an ideal place for mesophotic hard corals, including consistently good water quality and clarity because it is flushed by tidal currents semi-diurnally; it has low amounts of rainfall and sediment run-off from the nearby land; and it is largely protected from seasonally strong wind and wave energy. Combined, these oceanographic and weather conditions create patches of comparatively warm, calm, clear waters that remain relatively stable through time. Freely available Maximum Entropy modeling software (MaxEnt 3.3.3e) was used to create four separate maps of predicted habitat suitability for: (1) all mesophotic hard corals combined, (2) Leptoseris, (3) Montipora and (4) Porites genera. MaxEnt works by analyzing the distribution of environmental variables where species are present, so it can find other areas that meet all of the same environmental constraints. Several steps (Figure 0.1) were required to produce and validate four ensemble predictive models (i.e., models with 10 replicates each). Approximately 2,000 georeferenced records containing information about mesophotic coral occurrence and 34 environmental predictors describing the seafloor’s depth, vertical structure, available light, surface temperature, currents and distance from shoreline at three spatial scales were used to train MaxEnt. Fifty percent of the 1,989 records were randomly chosen and set aside to assess each model replicate’s performance using Receiver Operating Characteristic (ROC), Area Under the Curve (AUC) values. An additional 1,646 records were also randomly chosen and set aside to independently assess the predictive accuracy of the four ensemble models. Suitability thresholds for these models (denoting where corals were predicted to be present/absent) were chosen by finding where the maximum number of correctly predicted presence and absence records intersected on each ROC curve. Permutation importance and jackknife analysis were used to quantify the contribution of each environmental variable to the four ensemble models.
Resumo:
This investigation was carried out from June ‘89 to May ‘90 and focuses on the occurrence and abundance of Acetes shrimps in the Kutubdia channel. The shrimps of the genus Acetes occurred throughout the year in the area of investigation. Acetes showed a bimodal peak in occurrence, one in late monsoon season (August - September) and other in pre-monsoon season (February - March). But the maximum number of Acetes shrimps was recorded in March (462 individuals/haul). The Acetes population of this channel was dominated by four species, Acetes erythraeus (38.50%), A. indicus (32.98%), A. chinensis (4.48%) and A. japonicus (3.32%).
Resumo:
ELEFAN-Φ, ELEFAN-I, ELEFAN-II were used to estimate the parameters of population of Harpodon nehereus from length-frequency data collected from Kutubdia channel of Bangladesh coastal water. The Lα and K were found to be 24.48 cm and 1.50/year. The annual rate of natural mortality (M) and fishing mortality (F) were found to be 2.46 and 3.27 respectively. The rate of exploitation (E) was estimated as 0.57. The mean length at first capture (Lc) was estimated as 6.747 cm. This species was recruited in the fishery during March to May, August and October. The Peak recruitment appeared between March to April. Emax. was found to be 0.501. The present investigation clearly showed the over fishing (E>0.50) of H. nehereus in the investigated area of Bangladesh coastal water.
Resumo:
The primary objectives of this data summary are to display features of the distribution of hydrographic and chemical parameters in the Mozambique Channel in a form which will be useful for oceanographers, and to serve as a basis for the processing of more recent data obtained since 1977.
Resumo:
From 1977 to 1980, several research cruises were carried out in the coastal waters of Mozambique to collect oceanographic data. The distribution of hydrographic and bathythermograph stations is given. The water masses and circulation were mapped and wind data gathered.
Resumo:
This study aimed at evaluating the production levels in terms of catch estimates of the artisanal fisheries of the Edward-George system in addition to providing information on the facilities and services at landing sites and the composition, magnitude and distribution of fishing effort to guide development and management of the fisheries resources of the Edward and George lakes and Kazinga channel. Specifically, the study was expected to come up with the following outputs:- a) Information on the number of fish landing sites on the basin lakes; b) Information on the facilities available at the fish landing sites to service the fisheries sector ; c) Information on the number of fishers; d) Information on the number and types of fishing crafts; e) Information on the modes of propulsion of the fishing crafts; f) Information on the number types and sizes of fishing gears including the number of illegal fishing gears in the fishery; and g) Recommendations on development and management of the fisheries of the Edward and George lakes and Kazinga channel. h) Beach values in terms of annual catches and annual revenue from the water bodies.
Resumo:
Growth of Perna viridis L. inhabiting Moheshkhali jetty of the channel was studied for one year from November, 1990 to October, 1991. The mussel attained 88.12mm±14.69 in length within 12 months with a mean growth rate of 7.34mrnlmonth. Employing von Bertalanffy's growth equation it was found that P. viridis can be 88.43mm, 114.69mm and 121.9lmm at the age of 1, 2 and 3 year respectively. The highest growth rate was recorded during November-April, coinciding with the maximum abundance of phytoplankton and the greatest salinity. The maximum growth rate (99.38%) was recorded at an early stage and was followed by a sharp decline to 4.47%. The growth pattern of P. viridis fitted well with the von Bertalanffy's growth equation.
Resumo:
The present paper investigates the occurrence and abundance of brachyuran larvae in the Manora Channel during August- December 1993. The fortnightly planktonic sampling was carried out in Manora Channel which is bordered by mangroves, during day time from surface and subsurface waters at shallow depth using Bongo net of 300 micron mesh size. Analysis of samples revealed presence of brachyuran larvae of 12 species belonging to 6 families. Of these 4 species are confirmed: Serenella indica, Dotilla blanfordi, Metopograpsus thukuhar and Clistocoeloma lanatum, 2 provisionally identified species are: Pilumnus ?karachiensis and Pinnotheres ?pisum, 2 species are identified upto generic level: Philyra sp. and Pinnotheres sp., and 1 Ocypodid species and 3 Xanthid species are identified upto family level. This study based on identification, occurrence and abundance of brachyuran larvae in the area, also gives percentage composition of brachyuran larvae collected during 1993, in the Manora Channel.
Resumo:
Occurrence and abundance of Pseudo-nitzschia spp. at the mouth of the Maheshkhali channel of the Bay of Bengal, Bangladesh were studied. Plankton and water samples were collected monthly from the sub-surface water during high tide at daytime from June 2000 to May 2001. Four species of Pseudo-nitzschia, namely P. pungens, P. pseudodelicatissima, P. delicatissima and P. australis were identified and among them the first three were most commonly encountered and they varied seasonally. Pseudo-nitzschia delicatissima was the dominant species during the autumn and winter months, whereas P. pungens was dominant during the summer and spring months. Pseudo-nitzschia pseudodelicatissima exhibited its highest abundance level during the summer. Surface water temperature, salinity, nitrate-nitrogen (N03-N) and phosphate-phosphorus (P04-P) were recorded and their relationship with the occurrence and abundance of Pseudo-nitzschia species were studied. At the mouth of the Maheshkhali channel, Pseudo-nitzschia cell density was highest in late autumn (November) when highest salinity (35 o/oo) and P04-P (3.2 mg/l) concentrations and low temperature (23 °C) were recorded.
Resumo:
The seasonal mean size distribution of A. chinensis were estimated as 29.229mm ±4.77, 25.125mm ±2.55, 25.165mm ±2.29 and 32.44mm ±3.63 for annual, monsoon, postmonsoon and pre-monsoon period, respectively. Seasonal mean carapace length distribution were estimated as 9.37mm ±1.457, 8.063mm ±0.63,8.258mm ±0.59 and 10.37mm ±l.ll3 for annual, monsoon, post-monsoon and the pre-monsoon season. The carapace length and total length relationships was found to be TL= - 1.39±3.23 CL. Linear relation was found in arithmetic and as well as logarithmic scale.