39 resultados para northeast Taiwan
Resumo:
TOPIC 1: In terms of seasonal scale, temperature effect dominates the annual change of steric height in the open ocean whereas salinity effect controls it along the continental shelf. Large portion of the annual change of height relative to the 1000-db surface is contained in the upper 100m layer. However, in interannual scale large anomalies of steric height in the open ocean, are more often than not, caused by halosteric rather than thermosteric effect. At least in the open ocean the heights are almost totally determined by the behavior of deep water. Their interannual variability appears to be related to the cumulative effect of Eckman pumping. TOPIC 2: There is a "trend" that over the past 28 years the water at Station P has warmed. Least-square analysis indicates that this warming may be significant but shortening of the time-series data by approximately 10 years fails to show that this is the case. These "trends" have to be interpreted with care. The warming may be "apparent" in that it is not indicated clearly in the deep isopynal surfaces which, during the above period, have deepened. Thus warming at the isobaric surfaces may be the effect of the downward migration of the isopynal surfaces.
Resumo:
Twenty-seven years (1956-1983) of oceanographic data collected at Ocean Station P (50°N/145°W), as well as supplementary data obtained in its neighborhood, have been examined for trends and interannual variability in the northeast Pacific Ocean. There is evidence that the water is warming and freshening and that the isopycnal surfaces are deepening. Trends in oxyty are mostly not significant. The most common periods for the interannual variability appear to be 2 1/2 and 6-7 years. The vertical movement of water accounts for one half of the changes in temperature and salinity and 30% of those in oxyty. Other factors, such as a shift of water masses, may also be important.
Resumo:
The National Marine Fisheries Service (NMFS) Northeast Fisheries Science Center (NEFSC) Fisheries Sampling Branch (FSB) collects, maintains, and distributes data for scientific and management purposes in the northwest Atlantic Ocean. FSB manages three separate but related observer programs: the Northeast Fisheries Observer Program (NEFOP), the Industry Funded Scallop (IFS) Observer Program, and the At Sea Monitoring (ASM) Program. For the purposes of this manual, “observers” refers to any observer/monitor working for the FSB. In 2011, FSB trained and deployed over 200 observers, provided coverage on a variety of fisheries, and completed over 15,000 sea days. Observed trips are required under many of the region's fishery management plans, and for some fisheries by other federal laws and authorities such as Amendment 16 and Framework 44, Magnuson-Stevens Fishery Conservation and Management Act, Marine Mammal Protection Act, the Endangered Species Act, the and the Sustainable Fisheries Act. The purpose of this guide is to provide FSB observers, as well as end users of NEFSC Observer Program data, with a detailed description of each data field collected. In addition to this manual, the NEFSC Observer Program Biological Sampling and Catch Estimation Manual provides summaries and tables intended to enable observers to quickly determine the correct sampling protocols and methods while at sea. This manual represents a revision of the data forms, collection procedures, and protocols described in the 1996 NEFSC Observer Program Manual. For documentation of other changes see Documentation of changes made to the NEFSC Fisheries Observer Program Manual, 2013.
Resumo:
The prowfish (Zaprora silenus) is an infrequent component of bottom trawl catches collected on stock assessment surveys. Based on presence or absence in over 40,000 trawl catches taken throughout Alaskan waters southward to southern California, prowfish are most frequently encountered in the Gulf of Alaska and the Aleutian Islands at the edge of the continental shelf. Based on data from two trawl surveys, relative abundance indicated by catch per swept area reaches a maximum between 100 m and 200 m depth and is much higher in the Aleutian Islands than in the Gulf of Alaska. Females weigh 3.7% more than males of the same length. Weight-length functions are W (g) = 0.0164 L2.92 (males) and W = 0.0170 L2.92 (females). Length at age does not differ between sexes and is described by L = 89.3(1 – e–0.181(t+0.554)), where L is total length in cm and t is age in years. Females reached 50% maturity at a length of 57.0 cm and an age of 5.1 years. Prowfish diet is almost entirely composed of gelatinous zooplankton, primarily scyphozoa and salps.
Resumo:
Age and growth of sailfish (Istiophorus platypterus) in waters off eastern Taiwan were examined from counts of growth rings on cross sections of the fourth spine of the first dorsal fin. Length and weight data and the dorsal fin spines were collected monthly at the fishing port of Shinkang (southeast of Taiwan) from July 1998 to August 1999. In total, 1166 dorsal fins were collected, of which 1135 (97%) (699 males and 436 females) were aged successfully. Trends in the monthly mean marginal increment ratio indicated that growth rings are formed once a year. Two methods were used to back-calculate the length of presumed ages, and growth was described by using the standard von Bertalanffy growth function and the Richards function. The most reasonable and conservative description of growth assumes that length-at-age follows the Richards function and that the relationship between spine radius and lower jaw fork length (LJFL) follows a power function. Growth differed significantly between the sexes; females grew faster and reached larger sizes than did males. The maximum sizes in our sample were 232 cm LJFL for female and 221 cm LJFL for male.
Resumo:
The population structure of walleye pollock (Theragra chalcogramma) in the northeastern Pacific Ocean remains unknown. We examined elemental signatures in the otoliths of larval and juvenile pollock from locations in the Bering Sea and Gulf of Alaska to determine if there were significant geographic variations in otolith composition that may be used as natural tags of population affinities. Otoliths were assayed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Elements measured at the nucleus of otoliths by EPMA and laser ablation ICP-MS differed significantly among locations. However, geographic groupings identified by a multivariate statistical approach from EPMA and ICP-MS were dissimilar, indicating that the elements assayed by each technique were controlled by separate depositional processes within the endolymph. Elemental profiles across the pollock otoliths were generally consistent at distances up to 100 μm from the nucleus. At distances beyond 100 μm, profiles varied significantly but were remarkably consistent among individuals collected at each location. These data may indicate that larvae from various spawning locations are encountering water masses with differing physicochemical properties through their larval lives, and at approximately the same time. Although our results are promising, we require a better understanding of the mechanisms controlling otolith chemistry before it will be possible to reconstruct dispersal pathways of larval pollock based on probe-based analyses of otolith geochemistry. Elemental signatures in otoliths of pollock may allow for the delineation of fine-scale population structure in pollock that has yet to be consistently revealed by using population genetic approaches.
Resumo:
The stomach contents of the minimal armhook squid (Berryteuthis anonychus) were examined for 338 specimens captured in the northeast Pacific during May 1999. The specimens were collected at seven stations between 145−165°W and 39−49°N and ranged in mantle length from 10.3 to 102.2 mm. Their diet comprised seven major prey groups (copepods, chaetognaths, amphipods, euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) and was dominated by copepods and chaetognaths. Copepod prey comprised four genera, and 86% by number of the copepods were from the genus Neocalanus. Neocalanus cristatus was the most abundant prey taxa, composing 50% by mass and 35% by number of the total diet. Parasagitta elegans (Chaetognatha) occurred in more stomachs (47%) than any other prey taxon. Amphipods occurred in 19% of the stomachs but composed only 5% by number and 3% by mass of the total prey consumed. The four remaining prey groups (euphausiids, ostracods, unidentified fish, and unidentified gelatinous prey) together composed <2% by mass and <1% by number of the diet. There was no major change in the diet through the size range of squid examined and no evidence of cannibalism or predation on other cephalopod species.
Resumo:
The use of parasites as indicators of the stock structure of Pacific halibut (Hippoglossus stenolepis) in the northeast Pacific was investigated by using 328 adult (>55 cm fork length) halibut from 15 composite localities ranging from northern California to the northern Bering Sea and 96 juvenile (10–55 cm) halibut from five localities ranging from the northern Queen Charlotte Islands to the Bering Sea. Counts of eight selected parasite species (the juvenile acanthocephalans Corynosoma strumosum and C. villosum, the metacestode Nybelinia surmenicola, the digenean metacercaria Otodistomum sp., and the larval nematodes Anisakis simplex, Pseudoterranova decipiens, Contracaecum sp., and Spirurid gen. sp.) that produce infections of long duration, do not multiply in the host, and that have a relatively high abundance in at least one geographic locality were subjected to discriminant function analysis. Juvenile Pacific halibut showed no separation and, even though they were not heavily infected with parasites, the analysis suggested that juveniles could be a mixed stock. Three groups of adults were identified: fish from California to the southern Queen Charlotte Islands, those from the northern Queen Charlotte Islands to the central Bering Sea, and those from the central and north-ern Bering Sea. These groups suggest that the single stock concept be more thoroughly evaluated.
Resumo:
Recreational fisheries in the waters off the northeast U.S. target a variety of pelagic and demersal fish species, and catch and effort data sampled from recreational fisheries are a critical component of the information used in resource evaluation and management. Standardized indices of stock abundance developed from recreational fishery catch rates are routinely used in stock assessments. The statistical properties of both simulated and empirical recreational fishery catch-rate data such as those collected by the National Marine Fisheries Service (NMFS) Marine Recreational Fishery Statistics Survey (MRFSS) are examined, and the potential effects of different assumptions about the error structure of the catch-rate frequency distributions in computing indices of stock abundance are evaluated. Recreational fishery catch distributions sampled by the MRFSS are highly contagious and overdispersed in relation to the normal distribution and are generally best characterized by the Poisson or negative binomial distributions. The modeling of both the simulated and empirical MRFSS catch rates indicates that one may draw erroneous conclusions about stock trends by assuming the wrong error distribution in procedures used to developed standardized indices of stock abundance. The results demonstrate the importance of considering not only the overall model fit and significance of classification effects, but also the possible effects of model misspecification, when determining the most appropriate model construction.
Resumo:
Age and growth of the swordfish (Xiphias gladius) in Taiwan waters was studied from counts of growth bands on cross sections of the second ray of the first anal fin. Data on lower jaw fork length and weight, and samples of the anal fin of male and female swordfish were collected from three offshore and coastal tuna longline fishing ports on a monthly basis between September 1997 and March 1999. In total, 685 anal fins were collected and 627 of them (293 males and 334 females) were aged successfully. The lower jaw fork lengths of the aged individuals ranged from 83.4 to 246.6 cm for the females and from 83.3 to 206 cm for the males. The radii of the fin rays and growth bands on the cross sections were measured under a dissecting microscope equipped with an image analysis system. Trends in the monthly marginal increment ratio indicated that growth bands formed once a year. Thus, the age of each fish was deter-mined from the number of visible growth bands. Two methods were used to estimate and compare the standard and the generalized von Bertalanffy growth parameters for both males and females. The nonlinear least square estimates of the generalized von Bertalanffy growth parameters in method II, in which a power function was used to describe the relationship between ray radius and LJFL, were recommended as most acceptable. There were significant differences in growth parameters between males and females. The growth parameters estimated for females were the following: asymptotic length (L∞) = 300.66 cm, growth coefficient (K) = 0.040/yr, age at zero length (t0) = –0.75 yr, and the fitted fourth parameter (m) = –0.785. The growth parameters estimated for males were the following: asymptotic length (L∞) = 213.05 cm, growth coefficient (K) = 0.086/yr, age at zero length (t0) = –0.626 yr, and the fitted fourth parameter (m) = –0.768.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Recent analyses of terrestrial (pollen) and marine microfossils (foraminifera and radiolaria) in cores V28-204 and RC14-99 from the northwest Pacific Ocean extend the continuous, chronostratigraphically-controlled records of the regional vegetation of the Pacific coast of Japan and offshore marine environments through three full glacial cycles. The high-resolution pollen time series show systematic relationships between fluctuations in Japanese vegetation and global ice volume over the last 350 kyr. ... Comparison with solar insolation at 30°N and with an index of orbital parameters suggests that variation in northeast Asian summer monsoon intensity is related to orbital forcing.
Resumo:
Climate conditions in land areas of the Pacific Northwest are strongly influenced by atmosphere/ocean variability, including fluctuations in the Aleutian Low, Pacific-North American (PNA) atmospheric circulation modes, and the El Niño-Southern Oscillation (ENSO). It thus seems likely that climatically sensitive tree-ring data from these coastal land areas would likewise reflect such climatic parameters. In this paper, tree-ring width and maximum lakewood density chronologies from northwestern Washington State and near Vancouver Island, British Columbia, are compared to surface air temperature and precipitation from nearby coastal and near-coastal land stations and to monthly sea surface temperature (SST) and sea level pressure (SLP) data from the northeast Pacific sector. Results show much promise for eventual reconstruction of these parameters, potentially extending available instrumental records for the northeastern Pacific by several hundred years or more.