41 resultados para non-predator species
Resumo:
This manual presents geographic information by state of occurrence, and descriptions of the socio-economic impact created by the invasion of non-indigenous and native transplanted animal species in the Laurentian Great Lakes and the coastal waters of the United States. It is not a comprehensive literature review, but rather is intended as a primer for those unfamiliar with the socio-economic impacts of invasive aquatic and marine animals. Readers should also note that the information contained in this manual is current as of its publication date. New information and new species are routinely being added to the wider literature base. Most of the information was gathered from a number of web sites maintained by government agencies, commissions, academic institutions and museums. Additional information was taken from the primary and secondary literature. This manual focuses on socio-economic consequences of invasive species. Thus, ecological impacts, when noted in the literature, are not discussed unless a connection to socio-economic factors can be made. For a majority of the species listed, either the impact of their invasion is not understood, or it is not published in sources surveyed. In the species summaries, sources of information are cited except for information from the U.S. Geological Survey’s (USGS) Nonindigenous Aquatic Species Database http://nas.er.usgs.gov. This website formed the base information used in creating tables on geographic distribution, and in many of the species summaries provided. Thus, whenever information is given without specific author/source and date citation, it has come from this comprehensive source. (PDF contains 90 pages)
Persistence and Non-target Impact of Imazapyr Associated with Smooth Cordgrass Control in an Estuary
Resumo:
The herbicide (±-2-[4,5-dihydro-4-methyl-4-(1-methylethyl)- 5-oxo-1 H -imidazol-2-yl]-3-pyridinecarboxylic acid (imazapyr) has shown potential to control smooth cordgrass (Spartina alterniflora Loisel), a noxious weed in many estuaries throughout the world. Research was conducted under tidal estuary conditions in Willapa Bay, Washington, to determine imazapyr’s persistence and aquatic risk and impact to non-target estuary species. Persistence of imazapyr in water and sediment followed an exponential decay.(PDF has 6 pages.)
Resumo:
Hydrilla ( Hydrilla verticillata (L.f.) Royle), an invasive aquatic weed, continues to spread to new regions in the United States. Two biotypes, one a female dioecious and the other monoecious have been identified. Management of the spread of hydrilla requires understanding the mechanisms of introduction and transport, an ability to map and make available information on distribution, and tools to distinguish the known U.S. biotypes as well as potential new introductions. Review of the literature and discussions with aquatic scientists and resource managers point to the aquarium and water garden plant trades as the primary past mechanism for the regional dispersal of hydrilla while local dispersal is primarily carried out by other mechanisms such as boat traffic, intentional introductions, and waterfowl. The Nonindigenous Aquatic Species (NAS) database is presented as a tool for assembling, geo-referencing, and making available information on the distribution of hydrilla. A map of the current range of dioecious and monoecious hydrilla by drainage is presented. Four hydrilla samples, taken from three discrete, non-contiguous regions (Pennsylvania, Connecticut, and Washington State) were examined using two RAPD assays. The first, generated using primer Operon G17, and capable of distinguishing the dioecious and monoecious U.S. biotypes, indicated all four samples were of the monoecious biotype. Results of the second assay using the Stoffel fragment and 5 primers, produced 111 markers, indicated that these samples do not represent new foreign introductions. The differences in the monoecious and dioecious growth habits and management are discussed.
Resumo:
Market squid (Loligo opalescens) plays a vital role in the California ecosystem and serves as a major link in the food chain as both a predator and prey species. For over a century, market squid has also been harvested off the California coast from Monterey to San Pedro. Expanding global markets, coupled with a decline in squid product from other parts of the world, in recent years has fueled rapid expansion of the virtually unregulated California fishery. Lack of regulatory management, in combination with dramatic increases in fishing effort and landings, has raised numerous concerns from the scientific, fishing, and regulatory communities. In an effort to address these concerns, the National Oceanic and Atmospheric Administration’s (NOAA) Channel Islands National Marine Sanctuary (CINMS) hosted a panel discussion at the October 1997 California Cooperative Oceanic and Fisheries Investigations (CalCOFI) Conference; it focused on ecosystem management implications for the burgeoning market squid fishery. Both panel and audience members addressed issues such as: the direct and indirect effects of commercial harvesting upon squid biomass; the effects of harvest and the role of squid in the broader marine community; the effects of environmental variation on squid population dynamics; the sustainability of the fishery from the point of view of both scientists and the fishers themselves; and the conservation management options for what is currently an open access and unregulated fishery. Herein are the key points of the ecosystem management panel discussion in the form of a preface, an executive summary, and transcript. (PDF contains 33 pages.)
Resumo:
Otoliths commonly are used to determine the taxon, age, and size of fishes. This information is useful for population management, predator-prey studies, and archaeological research. The relationship between the length of a fish and the length of its otoliths remains unknown for many species of marine fishes in the Pacific Ocean. Therefore, the relationships between fish length and fish weight, and between otolith length and fish length, were developed for 63 species of fishes caught in the eastern North Pacific Ocean. We also summarized similar relationships for 46 eastern North Pacific fish species reported in the literature. The relationship between fish length and otolith length was linear, and most of the variability was explained by a simple least-squares regression (r 2 > 0.700 for 45 of 63 species). The relationship between otolith length and fish length was not significantly different between left and right otoliths for all but one fish species. Images of otoliths from 77 taxa are included to assist in the identification of species. (PDF file contains 38 pages.)
Resumo:
Histopathologic studies of lesions found in commercially important North Atlantic marine fishes are uncommon. As part of a comprehensive Northeast Fisheries Center program ("Ocean Pulse") to evaluate environmental and resource health on the U.S. Continental Shelf from Cape Hatteras to Nova Scotia, grossly visible lesions of the gills, integument, muscle, and viscera of primarily bottom-dwelling fishes were excised and examined using light microscopy. Several gadid and pleuronectid fishes accounted for most of the lesions observed. Most pathological examinations were incidental to samples taken for age and growth determination and evaluation of predator/prey relationships. Several gadids, with either gill, heart, or spleen lesions, were sampled more intensively. Gill lesions principally affected gadids and were caused by either microsporidans or an unidentified oocyte-like cell. The majority of gastrointestinal lesions consisted of encapsulated or encysted larval worms or microsporidan-induced cysts. Few heart lesions were found. Integumental lesioos included ulcers, lymphocystis, and trematode metacercariae. Liver lesions almost always consisted of encapsulated or encysted larval helminths. Necrotic granulomata were seen in muscle and microsporidan-induced granulomata in spleen. Although not numerous, histologically interesting lesions were noted in integument, heart, liver, spleen, and muscle of several fish species. Histologic study of tissues excised from a variety of demersal and pelagic fishes from the eastern North Atlantic (France, Germany, Spain) revealed assorted integumental, renal, hepatic, and splenic lesions. Small sample size and non-random sampling precluded obtaining a meaningful quantitative estimate of the prevalence of the observed lesions in the population at risk; however, a useful census has been made of the types of lesions present in commercially important marine fishes. (PDF file contains 20 pages.)
Resumo:
Non-governmental organizations (NGOs) are now major players in the realm of environmental conservation. While many environmental NGOs started as national organizations focused around single-species protection, governmental advocacy, and preservation of wilderness, the largest now produce applied conservation science and work with national and international stakeholders to develop conservation solutions that work in tandem with local aspirations. Marine managed areas (MMAs) are increasingly being used as a tool to manage anthropogenic stressors on marine resources and protect marine biodiversity. However, the science of MMA is far from complete. Conservation International (CI) is concluding a 5 year, $12.5 million dollar Marine Management Area Science (MMAS) initiative. There are 45 scientific projects recently completed, with four main “nodes” of research and conservation work: Panama, Fiji, Brazil, and Belize. Research projects have included MMA ecological monitoring, socioeconomic monitoring, cultural roles monitoring, economic valuation studies, and others. MMAS has the goals of conducting marine management area research, building local capacity, and using the results of the research to promote marine conservation policy outcomes at project sites. How science is translated into policy action is a major area of interest for science and technology scholars (Cash and Clark 2001; Haas 2004; Jasanoff et al. 2002). For science to move policy there must be work across “boundaries” (Jasanoff 1987). Boundaries are defined as the “socially constructed and negotiated borders between science and policy, between disciplines, across nations, and across multiple levels” (Cash et al. 2001). Working across the science-policy boundary requires boundary organizations (Guston 1999) with accountability to both sides of the boundary, among other attributes. (Guston 1999; Clark et al. 2002). This paper provides a unique case study illustrating how there are clear advantages to collaborative science. Through the MMAS initiative, CI built accountability into both sides of the science-policy boundary primarily through having scientific projects fed through strong in-country partners and being folded into the work of ongoing conservation processes. This collaborative, boundary-spanning approach led to many advantages, including cost sharing, increased local responsiveness and input, better local capacity building, and laying a foundation for future conservation outcomes. As such, MMAS can provide strong lessons for other organizations planning to get involved in multi-site conservation science. (PDF contains 3 pages)
Resumo:
This account concentrates on the six species of crayfish found in Austria, and the current state of knowledge on their distribution and laws affecting conservation. In general the occurrence and distribution of crayfish in Austria is poorly known, although information obtained by researchers and the general public, after careful checking, is increasing. Three native crayfish species occur in Austria: Austropotamobius torrentium which is relatively widespread, A. pallipes with a restricted distribution, and Astacus astacus which is widespread. Three species of non-native (alien) crayfish have been recorded from a total of 158 localities in Austria. They are Astacus leptodactylus from eastern Europe, and two Nearctic species: Pacifastacus leniusculus and Orconectes limosus. The introduction of alien species causes considerable problems as they act as vectors of crayfish plague and are able to outcompete native species by higher reproductive capacities.
Resumo:
Ponds are unjustly neglected habitats. This paper aims to raise awareness of the potential interaction between angling and the macrophyte vegetation of ponds. The work described by the author followed on from a study of 57 ponds in East Yorkshire, northeast England, by Linton & Goulder (2000). They found that the species richness of aquatic vascular plants (macrophytes) is greater in ponds that are used for angling and suggest that to some extent there are more species because disturbance by anglers leads to greater habitat diversity. This article describes how the hypothesis was tested by comparing species richness at fished sites with that at non-fished sites around the margins of ponds in two localities in East Yorkshire. The localities were investigated during August-September 1999.
Resumo:
Widespread pollution by heavy metals generated by various industries has serious adverse effects on human health and the environment. Cadmium is a heavy metal recognised as one of the most hazardous environmental pollutants. It is a non-essential and non-beneficial element to organisms, causing toxicity and other deleterious effects on various components of the aquatic environment. The ability of algal periphyton to concentrate cadmium from fresh water is well known. Moreover, periphyton communities are able to accumulate large amounts of cadmium despite its low concentration in fresh water. Many researchers use algal periphyton as an indicator of water quality in aquatic environments. In the present study, the authors ask two basic questions: Does cadmium accumulate along a food chain consisting of the periphyton community and a grazer species (Physa sp.) under semi-natural conditions provided by artificial streams? If not, which one can better indicate the water quality?
Resumo:
Many highly exploited ecosystems are managed on the basis of single-species demographic information. This management approach can exacerbate tensions among stakeholders with competing interests who in turn rely on data with notoriously high variance. In this case study, an application of diet and dive survey data was used to describe the prey preference of lingcod (Ophiodon elongatus) in a predictive framework on nearshore reefs off Oregon. The lingcod is a large, fast-growing generalist predator of invertebrates and fishes. In response to concerns that lingcod may significantly reduce diminished populations of rockfishes (Sebastes spp.), the diets of 375 lingcod on nearshore reefs along the Oregon Coast were compared with estimates of relative prey availability from dive surveys. In contrast to the transient pelagic fishes that comprised 46% of lingcod diet by number, rockfishes comprised at most 4.7% of prey items. Rockfishes were the most abundant potential prey observed in dive surveys, yet they were the least preferred. Ecosystem-based fisheries management (EBFM) requires information about primary trophic relationships, as well as relative abundance and distribution data for multiple species. This study shows that, at a minimum, predation relative to prey availability must be considered before predator effects can be understood in a management context.
Resumo:
The introduced grouper species peacock hind (Cephalopholis argus), was the dominant large-body piscivore on the Main Hawaiian Island (MHI) reefs assessed by underwater visual surveys in this study. However, published data on C. argus feeding ecology are scarce, and the role of this species in Hawaiian reef ecosystems is presently not well understood. Here we provide the first comprehensive assessment of the diet composition, prey electivity (dietary importance of prey taxa compared to their availability on reefs), and size selectivity (prey sizes in the diet compared to sizes on reefs) of this important predator in the MHI. Diet consisted 97.7% of fishes and was characterized by a wide taxonomic breadth. Surprisingly, feeding was not opportunistic, as indicated by a strongly divergent electivity for different prey fishes. In addition, whereas some families of large-body species were represented in the diet exclusively by recruit-size individuals (e.g., Aulostomidae), several families of smaller-body species were also represented by juveniles or adults (e.g., Chaetodontidae). Both the strength and mechanisms of the effects of C. argus predation are therefore likely to differ among prey families. This study provides the basis for a quantitative estimate of prey consumption by C. argus, which would further increase understanding of impacts of this species on native fishes in Hawaii.
Resumo:
The species list is drawn from an analysis of catches taken by Sumalian and Russian trawlers in the Gulf of Aden and the Arabian Sea between 1985 and 1990. The southern coastline of the Republic of Yemen has been divided into 7 areas, including waters around Socotra Island. The average depth of each trawl was recorded in 50 m increments. Non-appearance of the species in the area does not mean that the species do not occur in that area or depth, merely that it was not recorded in any of the samples analyzed. Specimens that could not be identified to species level have been excluded. A total of 195 species from 75 families was recorded and is summarized. Most of the identification of species was from FAO species identification literature. Confirmation of some species and usage of common names is from ICLARM's FishBase and Al Sedfy, et al. (1982).
Resumo:
The major constraint to the development of aquaculture in Nigeria has been the non-availability of fingerlings in required numbers of cultivable species. A specifically designed trap to collect mullet (Liza falcipinnis; Liza grandisquamis) juveniles during high tides was successful in collecting juveniles year-round. The collectors was more successful during night spring tides than during neap tides or daytime collections. Thus, the use of traps, especially in the tidal zones, could provide a cost-effective method of stocking fish farms by collecting juveniles and seed from the natural environment.
Resumo:
The Indo-pacific panther grouper (Chromileptes altiveli) is a predatory fish species and popular imported aquarium fish in the United States which has been recently documented residing in western Atlantic waters. To date, the most successful marine invasive species in the Atlantic is the lionfish (Pterois volitans/miles), which, as for the panther grouper, is assumed to have been introduced to the wild through aquarium releases. However, unlike lionfish, the panther grouper is not yet thought to have an established breeding population in the Atlantic. Using a proven modeling technique developed to track the lionfish invasion, presented is the first known estimation of the potential spread of panther grouper in the Atlantic. The employed cellular automaton-based computer model examines the life history of the subject species including fecundity, mortality, and reproductive potential and combines this with habitat preferences and physical oceanic parameters to forecast the distribution and periodicity of spread of this potential new invasive species. Simulations were examined for origination points within one degree of capture locations of panther grouper from the United States Geological Survey Nonindigenous Aquatic Species Database to eliminate introduction location bias, and two detailed case studies were scrutinized. The model indicates three primary locations where settlement is likely given the inputs and limits of the model; Jupiter Florida/Vero Beach, the Cape Hatteras Tropical Limit/Myrtle Beach South Carolina, and Florida Keys/Ten Thousand Islands locations. Of these locations, Jupiter Florida/Vero Beach has the highest settlement rate in the model and is indicated as the area in which the panther grouper is most likely to become established. This insight is valuable if attempts are to be made to halt this potential marine invasive species