35 resultados para national history curriculum
Resumo:
The authors investigated various life history aspects of 19 rockfish species (Sebastes chlorostictus, S. constellatus, S. dalli, S. elongatus, S. ensifer, S. entomelas, S. flavidus, S. goodei, S. hopkinsi, S. levis, S. melanostomus, S. miniatus, S. ovalis, S. paucispinis, S. rosaceus, S. rosenblatti, S. rufus, s. saxicola, S. semicinctus) from the southern California Bight. These aspects included depth distribution, age-length relationships (of 7 species), length-weight relationships, size at first maturity, spawning season, and fecundity. Growth rates of female S. elongatus, S. hopkinsi, S. ova/is, S. saxicola, and S. semicinctus were higher than male conspecifics. Multiple spawning per season was found in 12 species. Generally, most species spawned between late winter and early summer, though there was some spawning within the genus throughout the year. Spawning season duration ranged from 2 (S. flavidus) to 10 months (S. paucispinis). Spawning seasons tended to start earlier in the year and be of longer duration in the southern California Bight, compared to published data on central California conspecifics. Males matured at a smaller length in 7 of the 17 species studied. Maximum fecundities ranged from 18,000 (S. dalll) to about 2,680,000 (S. levis). (PDF file contains 44 pages.)
Resumo:
This laboratory guide presents taxonomic information on eggs and larvae of fishes of the Northeast Pacific Ocean (north of California) and the eastern Bering Sea. Included are early-life-history series, illustrations, and comparative descriptions of 232 species expected to spawn here, out of a total 627 species known to occur in marine waters of this area. Meristic and general life-history data are included, as well as diagnostic characters to help identify eggs and larvae. Most of this information has been gleaned from literature, with the addition of 200 previously unpublished illustrations. (PDF file contains 654 pages.)
Resumo:
This study aims to reconstruct the history of shore whaling in the southeastern United States, emphasizing statistics on the catch of right whales, Eubalaena glacialis, the preferred targets. The earliest record of whaling in North Carolina is of a proposed voyage from New York in 1667. Early settlers on the Outer Banks utilized whale strandings by trying out the blubber of carcasses that came ashore, and some whale oil was exported from the 1660s onward. New England whalemen whaled along the North Carolina coast during the 1720s, and possibly earlier. As some of the whalemen from the northern colonies moved to Nortb Carolina, a shore-based whale fishery developed. This activity apparently continued without interruption until the War of Independence in 1776, and continued or was reestablished after the war. The methods and techniques of the North Carolina shore whalers changed slowly: as late as the 1890s they used a drogue at the end of the harpoon line and refrained from staying fast to the harpooned whale, they seldom employed harpoon guns, and then only during the waning years of the fishery. The whaling season extended from late December to May, most successfully between February and May. Whalers believed they were intercepting whales migrating north along the coast. Although some whaling occurred as far north as Cape Hatteras, it centered on the outer coasts of Core, Shackleford, and Bogue banks, particularly near Cape Lookout. The capture of whales other than right whales was a rare event. The number of boat crews probably remained fairly stable during much of the 19th century, with some increase in effort in the late 1870s and early 1880s when numbers of boat crews reached 12 to 18. Then by the late 1880s and 1890s only about 6 crews were active. North Carolina whaling had become desultory by the early 1900s, and ended completely in 1917. Judging by export and tax records, some ocean-going vessels made good catches off this coast in about 1715-30, including an estimated 13 whales in 1719, 15 in one year during the early 1720s, 5-6 in a three-year period of the mid to late 1720s, 8 by one ship's crew in 1727, 17 by one group of whalers in 1728-29, and 8-9 by two boats working from Ocracoke prior to 1730. It is impossible to know how representative these fragmentary records are for the period as a whole. The Carolina coast declined in importance as a cruising ground for pelagic whalers by the 1740s or 1750s. Thereafter, shore whaling probably accounted for most of the (poorly documented) catch. Lifetime catches by individual whalemen on Shackleford Banks suggest that the average annual catch was at least one to two whales during 1830·80, perhaps about four during the late 1870s and early 1880s, and declining to about one by the late 1880s. Data are insufficient to estimate the hunting loss rate in the Outer Banks whale fishery. North Carolina is the only state south of New Jersey known to have had a long and well established shore whaling industry. Some whaling took place in Chesapeake Bay and along the coast of Virginia during the late 17th and early 18th centuries, but it is poorly documented. Most of the rigbt whales taken off South Carolina, Georgia, and northern Florida during the 19th century were killed by pelagic whalers. Florida is the only southeastern state with evidence of an aboriginal (pre-contact) whale fishery. Right whale calves may have been among the aboriginal whalers' principal targets. (PDF file contains 34 pages.)
Resumo:
Lake Chad is a very large, shallow eutrophic lake shared by Chad, Nigeria, Niger and Cameroun. It supplies approximately 13% of Nigeria's inland fish. It however lies in an unstable ecological environment characterised by intermittent period of rainfall and drought. This creates a very large draw down area. Consequently, the fisheries are affected by the oscillation in the size of lake due to the drought. Other factors affecting the volume of water are the numerous dams on the inflow rivers. The fishery is also subjected to intense overfishing and may be affected by pollution and other land use practices. The paper discusses changes that took place over the years as a result of the factors of drought, effect of dams on the inflow rivers. The fishery is also subjected to intense overfishing and may be affected by pollution and other land use practices. The paper discusses changes that took place over the years as a result of the factors of drought, effects of dams and overexploitation. Previous records of fish production, species composition and distribution, the status of the fish stocks, their sizes are compared with more recent data. The status of the fishery before and after the contraction of the lake is discussed. Suggestion for a national exploitation of the lake based on habitat improvement, increasing the volume of the water in the lake through controlled use of the influent rivers as well as reduction in overfishing are made
Resumo:
From a special issue: A Brief History of the Charles Darwin Foundation for the Galapagos Islands 1959-1988
Resumo:
Aboriginal Australians consumed oysters before settlement by Europeans as shown by the large number of kitchen middens along Australia's coast. Flat oysters, Ostrea angasi, were consumed in southeastern Australia, whereas both flat and Sydney rock oysters, Saccostrea glomerata, are found in kitchen middens in southern New South Wales (NSW), but only Sydney rock oysters are found in northern NSW and southern Queensland. Oyster fisheries began with the exploitation of dredge beds, for the use of oyster shell for lime production and oyster meat for consumption. These natural oyster beds were nealy all exhausted by the late 1800's, and they have not recovered. Oyster farming, one of the oldest aquaculture industries in Australia, began as the oyster fisheries declined in the late 1800's. Early attempts at farming flat oysters in Tasmania, Victoria, and South Australia, which started in the 1880's, were abandoned in the 1890's. However, a thriving Sydney rock oyster industry developed from primitive beginnings in NSW in the 1870's. Sydney rock oysters are farmed in NSW, southern Queensland, and at Albany, Western Australia (WA). Pacific oysters, Crassostrea gigas, are produced in Tasmania, South Australia, and Port Stephens, NSW. FLant oysters currently are farmed only in NSW, and there is also some small-scale harvesting of tropical species, the coarl rock or milky oyster, S. cucullata, and th black-lip oyster, Striostrea mytiloides, in northern Queensland. Despite intra- and interstate rivalries, oyster farmers are gradually realizing that they are all part of one industry, and this is reflected by the establishment of the national Australian Shellfish Quality Assuarance Program and the transfer of farming technology between states. Australia's oyster harvests have remained relatively stable since Sydney rock oyster production peaked in the mid 1970's at 13 million dozen. By the end of the 1990's this had stabilized at around 8 million dozen, and Pacific oyster production reached a total of 6.5 million dozen from Tasmania, South Australia, and Port Stephens, a total of 14.5 million dozen oysters for the whole country. This small increase in production during a time of substantial human population growth shows a smaller per capita consumption and a declining use of oysters as a "side-dish."
Resumo:
Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, represent a unique and isolated marine mammal population that has been hunted for a variety of purposes since prehistoric times. Archeological studies have shown that both Alutiiq Eskimos and Dena'ina Atabaskan Indians have long utilized many marine resources in Cook Inlet, including belugas. Over the past century, commercial whaling and sport hunting also occurred periodically in Cook Inlet prior to the Marine Mammal Protection Act of 1972 (MMPA). During the 1990's, the hunting mortality by Alaska Natives apparently increased to 40-70 whales per year, which led to the decling of this stock and its subsequent designation in 2000 as depleted under the MMPA. Concerns about the decline of the Cook Inlet stock resulted in a voluntary suspension of the subsistenc hunt by Alaska Natives in 1999. The difficulty in obtaining accurate estimates for the harvest of these whales is due to the inability to identify all of the hunters and, in turn, the size of the harvest. Attempts to reconstruct harvest records based on hunters' recollections and interviews from only a few households have been subject to a wide degree of speculation. To adequately monitor the beluga harvest, the National Marine Fisheries Service established marking and reporting regulations in October 1999. These rules require that Alaska Natives who hunt belugas in Cook Inlet must collect the lowere left jaw from harvested whales and complete a report that includes date and time of the harvest, coloration of the whale, harvest location, and method of harvest. The MMPA was amended in 2000 to require a cooperative agreement between the National Marine Fisheries Service and Alaska Native organizations before hunting could be resumed.
Resumo:
Spencer Fullerton Baird (Fig. 1), a noted systematic zoologist and builder of scientific institutions in 19th century America, persuaded the U.S. Congress to establish the United States Commission of Fish and Fisheries1 in March 1871. At that time, Baird was Assistant Secretary of the Smithsonian Institution. Following the death of Joseph Henry in 1878, he became head of the institution, a position he held until his own demise in 1887. In addition to his many duties as a Smithsonian official, including his prominent role in developing the Smithsonian’s Federally funded National Museum as the repository for governmental scientific collections, Baird directed the Fish Commission from 1871 until 1887. The Fish Commission’s original mission was to determine the reasons and remedies for the apparent decline of American fisheries off southern New England as well as other parts of the United States. In 1872, Congress further directed the Commission to begin a large fish hatching program aimed at increasing the supply of American food f
Resumo:
Historically, America's use and enjoyment of the oyster extend far back into prehistoric times. The Native Americans often utilized oysters, more intensively in some areas than in others, and, at least in some areas of the Caribbean and Pacific coast, the invading Spanish sought oysters as eagerly as they did gold-but for the pearls. That was the pearl oyster, Pinctada sp., and signs of its local overexploitation were recorded early in the 16th century. During the 1800's, use of the eastern oyster grew phenomenally and, for a time, it outranked beef as a source of protein in some parts of the nation. Social events grew up around it, as it became an important aspect of culture and myth. Eventually, research on the oyster began to blossom, and scientific literature on the various species likewise bloomed-to the extent that when the late Paul Galtsoff wrote his classic treatise "The American oyster Crassostrea virginica Gmelin" in 1954, he reported compiling an extensive bibliography of over 6,000 subject and author cards on oysters and related subjects which he deposited in the library of the Woods Hole Laboratory of the Bureau of Commercial Fisheries (now NMFS). That large report, volume 64 (480 pages) of the agency's Fishery Bulletin, was a bargain at $2.75, and it has been a standard reference ever since. But the research and the attendant literature have grown greatly since Galtsoff's work was published, and now that has been thoroughly updated.
Resumo:
The Northeast Fisheries Science Center of NOAA's National Marine Fisheries Service has a long history of research on benthic invertebrates and habitats in support of the management of living marine resources. These studies began in the 1870's under Spencer F. Baird's guidance as part of an effort to characterize the Nation's fisheries and living marine resources and their ecological interactions. This century and a quarter of research has included many benthic invertebrate studies, including community characterizations, shellfish biology and culture, pathology, ecosystem energy budget modeling, habitat evaluations, assessments of human impacts, toxic chemical bioaccumulation in demersal food webs, habitat or endangered species management, benthic autecology, systematics (to define new species and species population boundaries), and other benthic studies. Here we review the scope of past and current studies as a background for strategic research planning and suggest areas for further research to support NOAA's goals of sustainable fisheries management, healthy coastal ecosystems, and protected species populations.
Resumo:
The 1980's seems to have been the decade for conservation anniversaries. Celebrating centennials have been the U.S. Fishery Bulletin (1981), NMFS Woods Hole Laboratory (1985), Journal of the Marine Biological Association (1987) and the Association itself (1984), Pacific halibut fishery (1988), Marine Biological Laboratory at Woods Hole, Mass. (1988), and England's Ministry of Agriculture, Fisheries, and Food (1989). While the U. S. Department of Commerce turned 75 (1988), 50th anniversaries were nlarked by the NMFS Northwest and Alaska Fisheries Center (1981), The Wildlife Society and its Journal ofWildlife Management (1987), National Wildlife Federation (1986), International Game Fish Association (1989), and, of course, the Marine Fisheries Review (1988), which provided the raison d'etre for this special issue being devoted to "Marine Fisheries History."
Resumo:
The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff. Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.
Resumo:
Thirty-six years ago, NOAA’s National Marine Fisheries Service began research on how to reduce mortality of sea turtles, Chelonioidea, in shrimp trawls. As a result of efforts of NMFS and many stakeholders, including domestic and foreign fishermen, environmentalists, Sea Grant agents, and government agencies, many trawl fisheries around the world use a version of the turtle excluder device (TED). This article chronicles the contributions of NMFS to this effort, much of which occurred at the NMFS Mississippi Laboratories in Pascagoula. Specifically, it summarizes the impetus for and results of major developments and little known events in the TED research and discusses how these influenced the course of subsequent research.
Resumo:
NOAA’s Center for Coastal Monitoring and Assessment’s Biogeography Branch has mapped and characterized large portions of the coral reef ecosystems inside the U.S. coastal and territorial waters, including the U.S. Caribbean. The complementary protocols used in these efforts have enabled scientists and managers to quantitatively compare different marine ecosystems in tropical U.S. waters. The Biogeography Branch used these same general protocols to generate three seamless habitat maps of the Bank/Shelf (i.e., from 0 ≤50 meters) and the Bank/Shelf Escarpment (i.e., from 50 ≤1,000 meters and from 1,000 ≤ 1,830 meters) inside Buck Island Reef National Monument (BIRNM). While this mapping effort marks the fourth time that the shallow-water habitats of BIRNM have been mapped, it is the first time habitats deeper than 30 meters (m) have been characterized. Consequently, this habitat map provides information on the distribution of mesophotic and deep-water coral reef ecosystems and serves as a spatial baseline for monitoring change in the Monument. A benthic habitat map was developed for approximately 74.3 square kilometers or 98% of the BIRNM using a combination of semi-automated and manual classification methods. The remaining 2% was not mapped due to lack of imagery in the western part of the Monument at depths ranging from 1,000 to 1,400 meters. Habitats were interpreted from orthophotographs, LiDAR (Light Detection and Ranging) imagery and four different types of MBES (Multibeam Echosounder) imagery. Three minimum mapping units (MMUs) (100, 1,000 and 5,000 square meters) were used because of the wide range of depths present in the Monument. The majority of the area that was characterized was deeper than 30 m on the Bank/Shelf Escarpment. This escarpment area was dominated by uncolonized sand which transitioned to mud as depth increased. Bedrock was exposed in some areas of the escarpment, where steep slopes prevented sediment deposition. Mesophotic corals were seen in the underwater video, but were too sparsely distributed to be reliably mapped from the source imagery. Habitats on the Bank/Shelf were much more variable than those seen on the Bank/Shelf Escarpment. The majority of this shelf area was comprised of coral reef and hardbottom habitat dominated by various forms of turf, fleshy, coralline or filamentous algae. Even though algae was the dominant biological cover type, nearly a quarter (24.3%) of the Monument’s Bank/Shelf benthos hosted a cover of 10%-<50% live coral. In total, 198 unique combinations of habitat classes describing the geography, geology and biology of the sea-floor were identified from the three types of imagery listed above. No thematic accuracy assessment was conducted for areas deeper than about 50 meters, most of which was located in the Bank/Shelf Escarpment. The thematic accuracy of classes in waters shallower than approximately 50 meters ranged from 81.4% to 94.4%. These thematic accuracies are similar to those reported for other NOAA benthic habitat mapping efforts in St. John (>80%), the Main Eight Hawaiian Islands (>84.0%) and the Republic of Palau (>80.0%). These digital maps products can be used with confidence by scientists and resource managers for a multitude of different applications, including structuring monitoring programs, supporting management decisions, and establishing and managing marine conservation areas. The final deliverables for this project, including the benthic habitat maps, source imagery and in situ field data, are available to the public on a NOAA Biogeography Branch website (http://ccma.nos.noaa.gov/ecosystems/coralreef/stcroix.aspx) and through an interactive, web-based map application (http://ccma.nos.noaa.gov/explorer/biomapper/biomapper.html?id=BUIS). This report documents the process and methods used to create the shallow to deep-water benthic habitat maps for BIRNM. Chapter 1 provides a short introduction to BIRNM, including its history, marine life and ongoing research activities. Chapter 2 describes the benthic habitat classification scheme used to partition the different habitats into ecologically relevant groups. Chapter 3 explains the steps required to create a benthic habitat map using a combination of semi-automated and visual classification techniques. Chapter 4 details the steps used in the accuracy assessment and reports on the thematic accuracy of the final shallow-water map. Chapter 5 summarizes the type and abundance of each habitat class found inside BIRNM, how these habitats compare to past habitat maps and outlines how these new habitat maps may be used to inform future management activities.
Resumo:
The Virginia Aquarium & Marine Science Center Foundation’s Stranding Response Program (VAQS) was awarded a grant in 2008 to conduct life history analysis on over 10 years of Tursiops truncatus teeth and gonad samples from stranded animals in Virginia. A major part of this collaborative grant included a workshop involving life historians from Hubbs-Sea World Research Institute (HSWRI), NOS, Texas A & M University (TAMU), and University of North Carolina Wilmington (UNCW). The workshop was held at the NOAA Center for Coastal Environmental Health & Biomolecular Research in Charleston, SC on 7-9 July 2009. The workshop convened to 1) address current practices among the groups conducting life history analysis, 2) decide on protocols to follow for the collaborative Prescott grant between VAQS and HSWRI, 3) demonstrate tissue preparation techniques and discuss shortcuts and pitfalls, 4) demonstrate data collection from prepared testes, ovaries, and teeth, and 5) discuss data analysis and prepare an outline and timeline for a future manuscript. The workshop concluded with discussions concerning the current collaborative Tursiops Life History Prescott grant award and the beginnings of a collaborative Prescott proposal with members of the Alliance of Marine Mammal Parks and Aquariums to further clarify reproductive analyses. This technical memorandum serves as a record of this workshop.