77 resultados para microbial diversity
Resumo:
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date.
Resumo:
We determined the dis-tribution of multiple (n=68; 508−978 mm total length [TL]) striped bass (Morone saxatilis) along the estua-rine salinity gradient in the Mullica River−Great Bay in southern New Jersey over two years to determine the diversity of habitat use and the movements of striped bass. Ultrasoni-cally tagged fish were detected in this estuarine area by means of wireless hydrophones deployed at four gates inside the entrance of the study area and farther up to tidal freshwater (38 km). Numerous individuals frequently departed and returned to the estuary, primarily in the spring and late fall over periods of 15−731 days at liberty. The period of residency and degree of movement of individuals to and from the estuary varied extensively among seasons and years. The diversity of movements in and out of, as well as within, the estuary differed from the less-complex patterns reported in earlier studies, perhaps because of the comprehensive and synoptic nature of this study.
Resumo:
The paper describes the wide range of traditional fishing gear used by subsistence and professional fishers in the inland waters in Bangladesh as well as their impact on the fisheries and the environment. The negative impacts indicate the need for regulation of specific types of fishing gear at particular times of the year. An awareness/training program should be extended to the fishermen to create awareness of the long-term effects of their fishing practices and to impart knowledge of fishing laws.
Resumo:
China has a very rich genetic diversity in common carp (Cyprinus carpio) and the red common carp plays an important role in Chinese aquaculture and genetic studies. Selective breeding, particularly crossbreeding has been applied successfully to red common carps in China, and the products of these efforts have been in commercial use since the 1970s. However, knowledge of the quantitative and molecular genetics of these carps is limited. Studies were therefore undertaken to: (1) understand the genetic diversity and genetic relationship of red common carps in China; (2) understand the inheritance of color phenotype of Oujiang color carp; (3) select stable Oujiang color carp with fast growth rate and ornamental Oujiang color carp comparable with the Koi common carp from Japan; (4) study the culture performance and culture systems suitable for the Oujiang color carp in cages and paddies; (5) extend better quality fish and appropriate culture systems for small scale fish farmers in poor areas.
Resumo:
The giant freshwater prawn (Macrobrachium rosenbergii) is cultured widely around the world but little is known about the levels and patterns of genetic diversity in either wild or cultured stocks. Studies have suggested that genetic diversity may be relatively low in some cultured stocks due to the history of how they were founded and subsequent exposure to repeated population bottlenecks in hatcheries. In contrast, wild stocks have an extensive distribution that extends from Southern Asia across Southeast (SE) Asia to the Pacific region. Therefore, wild stocks could be an important resource for genetic improvement of culture stocks in the future. Understanding the extent and patterns of genetic diversity in wild giant freshwater prawn stocks will assist decisions about the direction future breeding programs may take. Wild stock genetic diversity was examined using a 472 base-pair segment of the 16S rRNA gene in 18 wild populations collected from across the natural range of the species. Two major clades ("eastern" and "western") were identifi ed either side of Huxley’s line, with a minimum divergence of 6.2 per cent, which implies separation since the Miocene period (5-10 MYA). While divergence estimates within major clades was small (maximum 0.9 per cent), evidence was also found for population structuring at a lower spatial scale. This will be examined more intensively with a faster evolving mtDNA gene in the future.
Resumo:
A discussion is presented on the topic of maintaining genetic diversity in aquatic ecosystems, considering the various threats caused by irreversible damage or loss to the environment. The current situation in aquaculture and future prospects regarding the conservation and protection of endangered species are outlined, describing the case of tilapias in Africa as one particular example of fish conservation.
Resumo:
Microbial biofilms have been found to increase fish production in ponds by increasing heterotrophic production through periphyton proliferation on available substrates. In this paper, the role of substrate based microbial biofilm in the production of Cyprinus carpio and Labeo rohita grown in ponds is investigated, using an easily available and biodegradable agricultural waste product (sugarcane bagasse) as substrate.
Resumo:
This book is a research output on fishing gears used in the beels from Sunamgan Haor areas under the initiative of the Community Based Resource Management Project (CBRMP) of LGED and WorldFish. It presents a collection of gears recorded in the CBRMP project area during monitoring conducted by WorldFish from 2008 to 2012. The book contains a total of 63 gears found in Sunamganj haor area.
Resumo:
This book is a modest attempt at identifying Sunamganj haor fish species, especially in areas falling under the Sunamganj Community Based Resource Management Project (CBRMP). It contains a total of 126 fish species from 39 families found in the Sunamganj haor area. CBRMP has promoted community based fisheries management approaches that, along with their livelihoods focus, are helping to preserve and enhance natural fish stocks in the hoar basin. WorldFish support to LGED involves a number of areas including monitoring the impacts of CBRMP on fish catch, bio-diversity and livelihoods.
Resumo:
The mucus surface layer of corals plays a number of integral roles in their overall health and fitness. This mucopolysaccharide coating serves as vehicle to capture food, a protective barrier against physical invasions and trauma, and serves as a medium to host a community of microorganisms distinct from the surrounding seawater. In healthy corals the associated microbial communities are known to provide antibiotics that contribute to the coral’s innate immunity and function metabolic activities such as biogeochemical cycling. Culture-dependent (Ducklow and Mitchell, 1979; Ritchie, 2006) and culture-independent methods (Rohwer, et al., 2001; Rohwer et al., 2002; Sekar et al., 2006; Hansson et al., 2009; Kellogg et al., 2009) have shown that coral mucus-associated microbial communities can change with changes in the environment and health condition of the coral. These changes may suggest that changes in the microbial associates not only reflect health status but also may assist corals in acclimating to changing environmental conditions. With the increasing availability of molecular biology tools, culture-independent methods are being used more frequently for evaluating the health of the animal host. Although culture-independent methods are able to provide more in-depth insights into the constituents of the coral surface mucus layer’s microbial community, their reliability and reproducibility rely on the initial sample collection maintaining sample integrity. In general, a sample of mucus is collected from a coral colony, either by sterile syringe or swab method (Woodley, et al., 2008), and immediately placed in a cryovial. In the case of a syringe sample, the mucus is decanted into the cryovial and the sealed tube is immediately flash-frozen in a liquid nitrogen vapor shipper (a.k.a., dry shipper). Swabs with mucus are placed in a cryovial, and the end of the swab is broken off before sealing and placing the vial in the dry shipper. The samples are then sent to a laboratory for analysis. After the initial collection and preservation of the sample, the duration of the sample voyage to a recipient laboratory is often another critical part of the sampling process, as unanticipated delays may exceed the length of time a dry shipper can remain cold, or mishandling of the shipper can cause it to exhaust prematurely. In remote areas, service by international shipping companies may be non-existent, which requires the use of an alternative preservation medium. Other methods for preserving environmental samples for microbial DNA analysis include drying on various matrices (DNA cards, swabs), or placing samples in liquid preservatives (e.g., chloroform/phenol/isoamyl alcohol, TRIzol reagent, ethanol). These methodologies eliminate the need for cold storage, however, they add expense and permitting requirements for hazardous liquid components, and the retrieval of intact microbial DNA often can be inconsistent (Dawson, et al., 1998; Rissanen et al., 2010). A method to preserve coral mucus samples without cold storage or use of hazardous solvents, while maintaining microbial DNA integrity, would be an invaluable tool for coral biologists, especially those in remote areas. Saline-saturated dimethylsulfoxide-ethylenediaminetetraacetic acid (20% DMSO-0.25M EDTA, pH 8.0), or SSDE, is a solution that has been reported to be a means of storing tissue of marine invertebrates at ambient temperatures without significant loss of nucleic acid integrity (Dawson et al., 1998, Concepcion et al., 2007). While this methodology would be a facile and inexpensive way to transport coral tissue samples, it is unclear whether the coral microbiota DNA would be adversely affected by this storage medium either by degradation of the DNA, or a bias in the DNA recovered during the extraction process created by variations in extraction efficiencies among the various community members. Tests to determine the efficacy of SSDE as an ambient temperature storage medium for coral mucus samples are presented here.
Resumo:
Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.