38 resultados para miami
Resumo:
C2R is a collection of C routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 C2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the C2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer C2R to others in the hope that they will find it useful. (PDF contains 27 pages)
Resumo:
For2R is a collection of Fortran routines for saving complex data structures into a file that can be read in the R statistics environment with a single command.1 For2R provides both the means to transfer data structures significantly more complex than simple tables, and an archive mechanism to store data for future reference. We developed this software because we write and run computationally intensive numerical models in Fortran, C++, and AD Model Builder. We then analyse results with R. We desired to automate data transfer to speed diagnostics during working-group meetings. We thus developed the For2R interface to write an R data object (of type list) to a plain-text file. The master list can contain any number of matrices, values, dataframes, vectors or lists, all of which can be read into R with a single call to the dget function. This allows easy transfer of structured data from compiled models to R. Having the capacity to transfer model data, metadata, and results has sharply reduced the time spent on diagnostics, and at the same time, our diagnostic capabilities have improved tremendously. The simplicity of this interface and the capabilities of R have enabled us to automate graph and table creation for formal reports. Finally, the persistent storage in files makes it easier to treat model results in analyses or meta-analyses devised months—or even years—later. We offer For2R to others in the hope that they will find it useful. (PDF contains 31 pages)
Resumo:
The 19th Annual Symposium on Sea Turtle Biology and Conservation was the largest to date. The beautiful venue was the South Padre Island Convention Centre on South Padre Island, Texas from March 2-6, 1999. Key features of the 19th were invited talks on the theme The Promise, the Pain, and the Progress of 50 years of Sea Turtle Research and Conservation, a mini-symposium on the Kemp's ridley and an increased emphasis on high quality poster sessions. Hosts for the meeting included Texas A&M University, the Texas Sea Grant College Program, The Gladys Porter Zoo and Sea Turtle, Inc. Co-sponsors included the National Marine Fisheries Service-Southeast Fisheries Science Center, the National Marine Fisheries Service-Protected Resources Branch, Padre Island National Seashore and the U.S. Fish and Wildlife Service. With the assistance of Jack Frazier, we were fortunate to obtain a $30,000 grant from the David and Lucile Packard Foundation. This grant provided travel support to 49 individuals from 24 nations who presented a total of 50 presentations. (PDF contains 309 pages)
Resumo:
For the first time in its history, the International Symposium on Sea Turtle Biology and Conservation migrated to a site outside of the United States. Thus the Eighteenth edition was hosted by the Mazatlán Research Unit of the Instituto de Ciencias del Mar y Limnología of the Mexican National Autonomous University (UNAM) in Mazatlán, Sinaloa (Mexico) where it was held from 3-7, March, 1998. Above all, our symposium is prominent for its dynamism and enthusiasm in bringing together specialists from the world´s sea turtle populations. In an effort to extend this philosophy, and fully aware of how fast the interest in sea turtles has grown, the organizers paid special attention to bring together as many people as possible. With the tremendous efforts of the Travel Committee and coupled with a special interest by the Latin American region´s devotees, we managed to get 653 participants from 43 countries. The number of presentations increased significantly too, reaching a total of 265 papers, ranging from cutting-edge scientific reports based on highly sophisticated methods, to the experiences and successes of community-based and environmental education programs. A priority given by this symposium was the support and encouragement for the construction of "bridges" across cultural and discipline barriers. We found success in achieving a multinational dialogue among interest groups- scientists, resource managers, decision makers, ngo's, private industry. There was a broad representation of the broad interests that stretch across these sectors, yet everyone was able to listen and offer their own best contribution towards the central theme of the Symposium: the conservation of sea turtles and the diversity of marine and coastal environments in which they develop through their complicated and protracted life cycle. Our multidisciplinary approach is highly important at the present, finding ourselves at a cross roads of significant initiatives in the international arena of environmental law, where the conservation of sea turtles has a key role to play. Many, many people worked hard over the previous 12 months, to make the symposium a success. Our sincerest thanks to all of them: Program committee: Laura Sarti (chair), Ana Barragán, Rod Mast, Heather Kalb, Jim Spotilla, Richard Reina, Sheryan Epperly, Anna Bass, Steve Morreale, Milani Chaloupka, Robert Van Dam, Lew Ehrhart, J. Nichols, David Godfrey, Larry Herbst, René Márquez, Jack Musick, Peter Dutton, Patricia Huerta, Arturo Juárez, Debora Garcia, Carlos Suárez, German Ramírez, Raquel Briseño, Alberto Abreu; Registration and Secretary: Jane Provancha (chair), Lupita Polanco; Informatics: Germán Ramírez, Carlos Suárez; Cover art: Blas Nayar; Designs: Germán Ramírez, Raquel Briseño, Alberto Abreu. Auction: Rod Mast; Workshops and special meetings: Selina Heppell; Student prizes: Anders Rhodin; Resolutions committee: Juan Carlos Cantú; Local organizing committee: Raquel Briseño, Jane Abreu; Posters: Daniel Ríos and Jeffrey Semminoff; Travel committee: Karen Eckert (chair), Marydele Donnelly, Brendan Godley, Annette Broderick, Jack Frazier; Student travel: Francisco Silva and J. Nichols; Vendors: Tom McFarland and J. Nichols; Volunteer coordination: Richard Byles; Latin American Reunión: Angeles Cruz Morelos; Nominations committee: Randall Arauz, Colleen Coogan, Laura Sarti, Donna Shaver, Frank Paladino. Once again, Ed Drane worked his usual magic with the Treasury of the Symposium Significant financial contributions were generously provided by government agencies. SEMARNAP (Mexico´s Ministry of Environment, Natural Resources and Fisheries) through its central office, the Mazatlán Regional Fisheries Research Center (CRIP-Mazatlán) and the National Center for Education and Capacity Building for Sustainable Development (CECADESU) contributed to the logistics and covered the costs of auditoria and audiovisual equipment for the Symposium, teachers and their hotels for the Community Development and Environmental Education workshop in the 5th Latin American Sea Turtle Specialists; DIF (Dept of Family Affairs) provided free accomodation and food for the more than 100 participants in the Latin American Reunion. In this Reunion, the British Council-Mexico sponsored the workshop on the Project Cycle. The National Chamber of the Fisheries Industry (CANAINPES) kindly sponsored the Symposium´s coffee breaks. Personnel from the local Navy (Octave Zona Naval) provided invaluable aid in transport and logistics. The Scientific Coordination Office from UNAM (CICUNAM) and the Latin American Biology Network (RELAB) also provided funding. Our most sincere recognition to all of them. In the name of this Symposium´s compilers, I would like to also express our gratitude to Wayne Witzell, Technical Editor for his guidance and insights and to Jack Frazier for his help in translating and correcting the English of contributions from some non-native English speakers. Many thanks to Angel Fiscal and Tere Martin who helped with the typing in the last, last corrections and editions for these Proceedings. To all, from around the world, who generously helped make the 18th Symposium a huge success, shared their experiences and listened to ours, our deepest gratitude! (PDF contains 316 pages)
Resumo:
Executive Summary: This study describes the socio-economic characteristics of the U.S. Caribbean trap fishery that encompasses the Commonwealth of Puerto Rico and Territory of the U.S. Virgin Islands. In-person interviews were administered to one hundred randomly selected trap fishermen, constituting nearly 25% of the estimated population. The sample was stratified by geographic area and trap tier. The number of traps owned or fished to qualify for a given tier varied by island. In Puerto Rico, tier I consisted of fishermen who had between 1-40 fish traps, tier II was made up of fishermen who possessed between 41 and 100 fish traps, and tier III consisted of fishermen who held in excess of 100 fish traps. In St. Thomas and St. John, tier I was composed of fishermen who held between 1 and 50 fish traps, tier II consisted of fishermen who had between 51-150 fish traps and tier III was made up of fishermen who had in excess of 150 fish traps. Lastly, in St. Croix, tier I was made up of fishermen who had less than 20 fish traps and tier II consisted of fishermen who had 20 or more fish traps. The survey elicited information on household demographics, annual catch and revenue, trap usage, capital investment on vessels and equipment, fixed and variable costs, behavioral response to a hypothetical trap reduction program and the spatial distribution of traps. The study found that 79% of the sampled population was 40 years or older. The typical Crucian trap fisherman was older than their Puerto Rican and St. Thomian and St. Johnian counterparts. Crucian fishermen’s average age was 57 years whereas Puerto Rican fishermen’s average age was 51 years, and St. Thomian and St. Johnian fishermen’s average age was 48 years. As a group, St. Thomian and St. Johnian fishermen had 25 years of fishing experience, and Puerto Rican and Crucian fishermen had 30, and 29 years, respectively. Overall, 90% of the households had at least one dependent. The average number of dependents across islands was even, ranging between 2.8 in the district of St. Thomas and St. John and 3.4 in the district of St. Croix. The percentage utilization of catch for personal or family use was relatively low. Regionally, percentage use of catch for personal or family uses ranged from 2.5% in St. Croix to 3.8% in the St. Thomas and St. John. About 47% of the respondents had a high school degree. The majority of the respondents were highly dependent on commercial fishing for their household income. In St. Croix, commercial fishing made up 83% of the fishermen’s total household income, whereas in St. Thomas and St. John and Puerto Rico it contributed 74% and 68%, respectively. The contribution of fish traps to commercial fishing income ranged from 51% in the lowest trap tier in St. Thomas and St. John to 99% in the highest trap tier in St. Croix. On an island basis, the contribution of fish traps to fishing income was 75% in St. Croix, 61% in St. Thomas and St. John, and 59% in Puerto Rico. The value of fully rigged vessels ranged from $400 to $250,000. Over half of the fleet was worth $10,000 or less. The St. Thomas and St. John fleet reported the highest mean value, averaging $58,518. The Crucian and Puerto Rican fleets were considerably less valuable, averaging $19,831 and $8,652, respectively. The length of the vessels ranged from 14 to 40 feet. Fifty-nine percent of the sampled vessels were at least 23 feet in length. The average length of the St. Thomas and St. John fleet was 28 feet, whereas the fleets based in St. Croix and Puerto Rico averaged 21 feet. The engine’s propulsion ranged from 8 to 400 horsepower (hp). The mean engine power was 208 hp in St. Thomas and St. John, 108 hp in St. Croix, and 77 hp in Puerto Rico. Mechanical trap haulers and depth recorders were the most commonly used on-board equipment. About 55% of the sampled population reported owning mechanical trap haulers. In St. Thomas and St. John, 100% of the respondents had trap haulers compared to 52% in Puerto Rico and 20% in St. Croix. Forty-seven percent of the fishermen surveyed stated having depth recorders. Depth recorders were most common in the St. Thomas and St. John fleet (80%) and least common in the Puerto Rican fleet (37%). The limited presence of emergency position indication radio beacons (EPIRBS) and radar was the norm among the fish trap fleet. Only 8% of the respondents had EPIRBS and only 1% had radar. Interviewees stated that they fished between 1 and 350 fish traps. Puerto Rican respondents fished on average 39 fish traps, in contrast to St. Thomian and St. Johnian and Crucian respondents, who fished 94 and 27 fish traps, respectively. On average, Puerto Rican respondents fished 11 lobster traps, and St. Thomian and St. Johnian respondents fished 46 lobster traps. None of the Crucian respondents fished lobster traps. The number of fish traps built or purchased ranged between 0 and 175, and the number of lobster traps built or bought ranged between 0 and 200. Puerto Rican fishermen on average built or purchased 30 fish traps and 14 lobster traps, and St. Thomian and St. Johnian fishermen built or bought 30 fish traps and 11 lobster traps. Crucian fishermen built or bought 25 fish traps and no lobster traps. As a group, fish trap average life ranged between 1.3 and 5 years, and lobster traps lasted slightly longer, between 1.5 and 6 years. The study found that the chevron or arrowhead style was the most common trap design. Puerto Rican fishermen owned an average of 20 arrowhead traps. St. Thomian and St. Johnian and Crucian fishermen owned an average of 44 and 15 arrowhead fish traps, respectively. The second most popular trap design was the square trap style. Puerto Rican fishermen had an average of 9 square traps, whereas St. Thomian and St. Johnian fishermen had 33 traps and Crucian fishermen had 2 traps. Antillean Z (or S) -traps, rectangular and star traps were also used. Although Z (or S) -traps are considered the most productive trap design, fishermen prefer the smaller-sized arrowhead and square traps because they are easier and less expensive to build, and larger numbers of them can be safely deployed. The cost of a fish trap, complete with rope and buoys, varied significantly due to the wide range of construction materials utilized. On average, arrowhead traps commanded $94 in Puerto Rico, $251 in St. Thomas and St. John, and $119 in St. Croix. The number of trips per week ranged between 1 and 6. However, 72% of the respondents mentioned that they took two trips per week. On average, Puerto Rican fishermen took 2.1 trips per week, St. Thomian and St. Johnian fishermen took 1.4 trips per week, and Crucian fishermen took 2.5 trips per week. Most fishing trips started at dawn and finished early in the afternoon. Over 82% of the trips lasted 8 hours or less. On average, Puerto Rican fishermen hauled 27 fish traps per trip whereas St. Thomian and St. Johnian fishermen and Crucian fishermen hauled 68 and 26 fish traps per trip, respectively. The number of traps per string and soak time varied considerably across islands. In St. Croix, 84% of the respondents had a single trap per line, whereas in St. Thomas and St. John only 10% of the respondents had a single trap per line. Approximately, 43% of Puerto Rican fishermen used a single trap line. St. Thomian and St. Johnian fishermen soaked their traps for 6.9 days while Puerto Rican and Crucian fishermen soaked their traps for 5.7 and 3.6 days, respectively. The heterogeneity of the industry was also evidenced by the various economic surpluses generated. The survey illustrated that higher gross revenues did not necessarily translate into higher net revenues. Our analysis also showed that, on average, vessels in the trap fishery were able to cover their cash outlays, resulting in positive vessel income (i.e., financial profits). In Puerto Rico, annual financial profits ranged from $4,760 in the lowest trap tier to $32,467 in the highest tier, whereas in St. Thomas and St. John annual financial profits ranged from $3,744 in the lowest tier to $13,652 in the highest tier. In St. Croix, annual financial profits ranged between $9,229 and $15,781. The survey also showed that economic profits varied significantly across tiers. Economic profits measure residual income after deducting the remuneration required to keep the various factors of production in their existing employment. In Puerto Rico, annual economic profits ranged from ($9,339) in the lowest trap tier to $ 8,711 in the highest trap tier. In St. Thomas and St. John, annual economic profits ranged from ($7,920) in the highest tier to ($18,486) in the second highest tier. In St. Croix, annual economic profits ranged between ($7,453) to $10,674. The presence of positive financial profits and negative economic profits suggests that higher economic returns could be earned from a societal perspective by redirecting some of these scarce capital and human resources elsewhere in the economy. Furthermore, the presence of negative economic earnings is evidence that the fishery is overcapitalized and that steps need to be taken to ensure the long-run economic viability of the industry. The presence of positive financial returns provides managers with a window of opportunity to adopt policies that will strengthen the biological and economic performance of the fishery while minimizing any adverse impacts on local fishing communities. Finally, the document concludes by detailing how the costs and earnings information could be used to develop economic models that evaluate management proposals. (PDF contains 147 pages)
Resumo:
The spotted seatrout (Cynoscion nebulosus) is considered a key species relative to the implementation of the Comprehensive Everglades Restoration Plan (CERP). One of the goals of the CERP is to increase freshwater flows to Florida Bay. Increased freshwater flows can have potential positive and negative impacts on spotted seatrout populations. At low salinities, the planktonic eggs of spotted seatrout sink to the bottom and are not viable (Alshuth and Gilmore, 1994; Holt and Holt, 2002). On the other hand, increased freshwater flows can alleviate hypersaline conditions that could result in an expansion of the distribution of the early life stages of spotted seatrout (Thayer et al., 1999; Florida Department of Environmental Protection1). Thus it would be useful to develop a monitoring program that can detect changes in seatrout abundance on time scales short enough to be useful to resource managers. The NOAA Center for Coastal Fisheries and Habitat Research (NOAA) has made sporadic collections of juvenile seatrout using otter trawls since 1984 (see Powell et al, 2004). The results suggest that it might be useful to sample for seatrout in as many as eight different areas or basins (Figure 1): Bradley Key, Sandy Key, Johnson Key, Palm Key, Snake Bight, Central, Whipray and Crocodile Dragover. Unfortunately, logistical constraints are likely to limit the number of tows to about 40 per month over a period of six months each year. Inasmuch as few seatrout are caught in any given tow and the proportion of tows with zero seatrout is often high, it is important to determine how best to allocate this limited sampling effort among the various basins so that any trends in abundance may be detected with sufficient statistical confidence. (PDF contains 16 pages)
Resumo:
The coastal shrimp trawl fisheries have long been the focus of conservation actions to reduce turtle bycatch and mortality in the Gulf of Mexico and the U.S. Atlantic (NRC, 1990). Calculation of catch rates of sea turtles in shrimp trawls is necessary to evaluate the impact on sea turtle populations. In this paper we analyze sea turtle bycatch to provide an estimate of the current number of interactions with otter trawl gear as well as an estimate of the number of fatal inions in Southeast U.S. waters and the Gulf of Mexico. We also provide an estimate of the number of individuals likely to die in the future with the new regulations that will require an increase in the size of the escape openings in trutle excluder devices (TEDs). The new regulations will allow many more turtles to escape. Other gears also are discussed. (PDF contains 24 pages)
Resumo:
On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)
Resumo:
Forward: Looe Key National Marine Sanctuary (LKNMS) was designated in 1981 to protect and promote the study, teaching, and wise use of the resources of Looe Key Sanctuary (Plate A). In order to wisely manage this valuable resource, a quantitative resource inventory was funded by the Sanctuary Programs Division (SPD), Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration (NOAA) in cooperation with the Southeast Fisheries Center, National Marine Fisheries Service, NOAA; the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), University of Miami; the Fisher Island Laboratory, United States Geological Survey; and the St. Petersburg Laboratory, State of Florida Department of Natural Resources. This report is the result of this cooperative effort. The objective of this study was to quantitatively inventory selected resources of LKNMS in order to allow future monitoring of changes in the Sanctuary as a result of human or natural processes. This study, referred to as Phase I, gives a brief summary of past and present uses of the Sanctuary (Chapter 2); and describes general habitat types (Chapter 3), geology and sediment distribution (Chapter 4), coral abundance and distribution (Chapter 5), the growth history of the coral Montastraea annularis (Chapter 6), reef fish abundance and distribution (Chapter 7), and status of selected resources (Chapter 8). An interpretation of the results of the survey are provided for management consideration (Chapter 9). The results are expected to provide fundamental information for applied management, natural history interpretation, and scientific research. Numerous photographs and illustrations were used to supplement the report to make the material presented easier to comprehend (Plate B). We anticipate the information provided will be used by managers, naturalists, and the general public in addition to scientists. Unless otherwise indicated, all photographs were taken at Looe Key Reef by Dr. James A. Bohnsack. The top photograph in Plate 7.8 was taken by Michael C. Schmale. Illustrations were done by Jack Javech, NMFS. Field work was initiated in May 1983 and completed for the most part by October 1983 thanks to the cooperation of numerous people and organizations. In addition to the participating agencies and organizations we thank the Newfound Harbor Marine Institute and the Division of Parks and Recreation, State of Florida Department of Natural Resources for their logistical support. Special thanks goes to Billy Causey, the Sanctuary Manager, for his help, information, and comments. We thank in alphabetical order: Scott Bannerot, Margie Bastian, Bill Becker, Barbara Bohnsack, Grant Beardsley, John Halas, Raymond Hixon, Irene Hooper, Eric Lindblad, and Mike Schmale. We dedicate this effort to the memory of Ray Hixon who participated in the study and who loved Looe Key. (PDF contains 43 pages)
Resumo:
Dr. Charles M. Breder participated on the 1934 expedition of the Atlantis from Woods Hole, Massachusetts to Panama and back and kept a field diary of daily activities. The Atlantis expedition of 1934, led by Prof. A. E. Parr, was a milestone in the history of scientific discovery in the Sargasso Sea and the West Indies. Although naturalists had visited the Sargasso Sea for many years, the Atlantis voyage was the first attempt to investigate in detailed quantitative manner biological problems about this varying, intermittent ‘false’ bottom of living, floating plants and associated fauna. In addition to Dr. Breder, the party also consisted of Dr. Alexander Forbes, Harvard University and Trustee of the Woods Hole Oceanographic Institution (WHOI); T. S. Greenwood, WHOI hydrographer; M. D. Burkenroad, Yale University’s Bingham Laboratory, carcinology and Sargasso epizoa; M. Bishop, Peabody Museum of Natural History, Zoology Dept., collections and preparations and H. Sears, WHOI ichthyologist. The itinerary included the following waypoints: Woods Hole, the Bermudas, Turks Islands, Kingston, Colon, along the Mosquito Bank off of Nicaragua, off the north coast of Jamaica, along the south coast of Cuba, Bartlett Deep, to off the Isle of Pines, through the Yucatan Channel, off Havana, off Key West, to Miami, to New York City, and then the return to Woods Hole. During the expedition, Breder collected rare and little-known flying fish species and developed a method for hatching and growing flying fish larvae. (PDF contains 48 pages)
Resumo:
The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)
Resumo:
The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)
Proceedings fo the Seventeenth Annual Sea Turtle Symposium, 4-8 March 1997, Orlando, Florida, U.S.A.
Resumo:
The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of Central Florida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protección de las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, including sea turtle biologists, students, regulatory personnel, managers, and volunteers representing 38 countries. In addition to the United States, participants represented Australia, Austria, the Bahamas, Bonaire, Bermuda, Brazil, Canada, Colombia, Costa Rica, Croatia, Cuba, Cyprus, Dominican Republic, Ecuador, England, Guatemala, Greece, Honduras, India, Italy, Japan, Madagascar, Malaysia, Mexico, The Netherlands, Nicaragua, Peru, Philippines, Republic of Seychelles, Scotland, Spain, Sri Lanka, Switzerland, Taiwan, Turkey, Uruguay, and Venezuela. In addition to the 79 oral, 2 video, and 120 poster presentations, 3 workshops were offered: Selina Heppell (Duke University Marine Laboratory) provided “Population Modeling,” Mike Walsh and Sam Dover (Sea World-Orlando) conducted “Marine Turtle Veterinary Medicine” and “Conservation on Nesting Beaches” was offered by Blair Witherington and David Arnold (Florida Department of Environmental Protection). On the first evening, P.C.H. Pritchard delivered a thoughtful retrospect on Archie Carr that showed many sides of a complex man who studied and wrote about sea turtles. It was a presentation that none of us will forget. The members considered a number of resolutions at the Thursday business meeting and passed six. Five of these resolutions are presented in the Commentaries and Reviews section of Chelonian Conservation and Biology 2(3):442-444 (1997). The symposium was fortunate to have many fine presentations competing for the Archie Carr Best Student Presentations awards. The best oral presentation award went to Amanda Southwood (University of British Columbia) for “Heart rates and dive behavior of the leatherback sea turtle during the internesting interval.” The two runners-up were Richard Reina (Australian National University) for “Regulation of salt gland activity in Chelonia mydas” and Singo Minamikawa (Kyoto University) for “The influence that artificial specific gravity change gives to diving behavior of loggerhead turtles”. The winner of this year’s best poster competition was Mark Roberts (University of South Florida) for his poster entitled “Global population structure of green sea Turtles (Chelonia mydas) using microsatellite analysis of male mediated gene flow.” The two runners-up were Larisa Avens (University of North Carolina-Chapel Hill) for “Equilibrium responses to rotational displacements by hatchling sea turtles: maintaining a migratory heading in a turbulent ocean” and Annette Broderick (University of Glasgow) for “Female size, not length, is a correlate of reproductive output.” The symposium was very fortunate to receive a matching monetary and subscription gift from Anders J. G. Rhodin of the Chelonian Research Foundation. These enabled us to more adequately reward the fine work of students. The winners of the best paper and best poster awards received $400 plus a subscription to Chelonian Conservation and Biology. Each runner up received $100. The symposium owes a great debt to countless volunteers who helped make the meeting a success. Those volunteers include: Jamie Serino, Alan Bolton, and Karen Bjorndal, along with the UF students provided audio visual help, John Keinath chaired the student awards committee, Mike Salmon chaired the Program Commiteee, Sheryan Epperly and Joanne Braun compiled the Proceedings, Edwin Drane served as treasurer and provided much logistical help, Jane Provancha coordinated volunteers, Thelma Richardson conducted registration, Vicki Wiese coordinated food and beverage services, Jamie Serino and Erik Marin coordinated entertainment, Kenneth Dodd oversaw student travel awards, Traci Guynup, Tina Brown, Jerris Foote, Dan Hamilton, Richie Moretti, and Vicki Wiese served on the time and place committee, Blair Witherington created the trivia quiz, Tom McFarland donated the symposium logo, Deborah Crouse chaired the resolutions committee, Pamela Plotkin chaired the nominations committee, Sally Krebs, Susan Schenk, and Larry Wood conducted the silent auction, and Beverly and Tom McFarland coordinated all 26 vendors. Many individuals from outside the United States were able to attend the 17th Annual Sea Turtle Symposium thanks to the tireless work of Karen Eckert, Marydele Donnelly, and Jack Frazier in soliciting travel assistance for a number of international participants. We are indebted to those donating money to the internationals’ housing fund (Flo Vetter Memorial Fund, Marinelife Center of Juno Beach, Roger Mellgren, and Jane Provancha). We raise much of our money for international travel from the auction; thanks go to auctioneer Bob Shoop, who kept our auction fastpaced and entertaining, and made sure the bidding was high. The Annual Sea Turtle Symposium is unequaled in its emphasis on international participation. Through international participation we all learn a great deal more about the biology of sea turtles and the conservation issues that sea turtles face in distant waters. Additionally, those attending the symposium come away with a tremendous wealth of knowledge, professional contacts, and new friendships. The Annual Sea Turtle Symposium is a meeting in which pretenses are dropped, good science is presented, and friendly, open communication is the rule. The camaraderie that typifies these meetings ultimately translates into understanding and cooperation. These aspects, combined, have gone and will go a long way toward helping to protect marine turtles and toward aiding their recovery on a global scale. (PDF contains 342 pages)
Resumo:
This report contains results from the fourth cruise of the MODIS Optical Characterization Experiment (MOCE). Also resented are oceanographic data from two MOBY maintenance cruises L-20 and L-25. The MOCE4 cruise was the first NOAAINESDIS-Ied SeaWiFS Initialization cruise during which a variety ofspectroradiometric observations ofthe upper water column and atmosphere were made by investigators from NOAA, the University of Miami, CHORS and MLML. Data presented in this report were obtained by oceanographic CTD profiler: salinity, temperature, dissolved oxygen, beam attenuation and chlorophyll-a fluorescence~ and by water samplers: total suspended matter and suspended organic carbon and nitrogen, salinity and dissolved oxygen. (PDF contains 142 pages).
Resumo:
This report contains results from the third cruise of the Marine Optical Characterization Experiment (Fig. 1). A variety of spectroradiometric observations of the upper water column and atmosphere were made by investigators from the University of Miami, NOAA, CHORS and MLML. Data presented here were obtained by oceanographic CTD profiler: salinity, temperatllre, dissolved oxygen, beam attenuation and chlorophyll-a fluorescence; and by water samplers: total suspended matter and suspended organic carbon and nitrogen, salinity, and dissolved oxygen.