358 resultados para fish diversity
Resumo:
This book is a modest attempt at identifying Sunamganj haor fish species, especially in areas falling under the Sunamganj Community Based Resource Management Project (CBRMP). It contains a total of 126 fish species from 39 families found in the Sunamganj haor area. CBRMP has promoted community based fisheries management approaches that, along with their livelihoods focus, are helping to preserve and enhance natural fish stocks in the hoar basin. WorldFish support to LGED involves a number of areas including monitoring the impacts of CBRMP on fish catch, bio-diversity and livelihoods.
Resumo:
A study on the status of fisheries and environmental impact assessment (EIA) was conducted on Bashundhara Baridhara Housing Project (BBHP), Dhaka, Bangladesh for prediction and measure the effects of housing project related development activities that have already been implemented and planned for future implementation. The project is still under development phase and so far allotted 10,000 plots of different sizes. The study shows that the original water bodies and natural fish production there from have greatly declined due to earth filling carried out for development of land for the housing. The physico-chemical parameters of the existing water body within the project area were found to be suitable for fish farming in the estate. A number of economically important fish species are found available in the existing lake. However, the natural fisheries resources of the existing lake is under great stress due to the changes made in the ecosystem, siltation, construction of building and dumping of house building and household waste materials. This has caused some important fish species of the lake to become critically endangered and vulnerable which have been documented in this paper. Appropriate regulatory and mitigating measures with respect to water management, disposal of construction garbage and other biomedical toxic substances far away from the water bodies are required to be taken to keep the water safe and suitable for fish production as well as for multipurpose use of the lake water.
Resumo:
The experiment was carried out to study the impacts of fish sanctuaries on the production and diversity of plankton in beels of haor region at Mithamain Upazila of Kishoreganj district in Bangladesh during July 2004 to June 2005. A total of 75 (60 phyto and 15 zooplankton) and 74 (59 phyto and 15 zooplankton) genera of plankton were recorded in T-1 and T-2 (with sanctuary) respectively while only 50 (39 phyto and 11 zooplankton) genera were obtained in T-3 (control). Chlorophyceae and Copepoda were the most dominant group of phytoplankton and zooplankton respectively in all the treatments. The total phytoplankton numbers were found to range from 5472 to 35,833 cells/l and 5250 to 40,472 cells/l and total zooplankton from 667 to 1722 cells/l and 611 to 1667 cells/l in T-1 and T-2 respectively in sanctuary sites whereas the ranges of phytoplankton and zooplankton in the control site were 1778 to 29,333 cells/l and 56 to 1056 cells/l respectively. The maximum phytoplankton and zooplankton were recorded during winter season in all the treatments. The ranges of total plankton were 6194 to 37,500 cells/l, 6028 to 41,806 cells/l and 1889 to 29,444 cells/l in T-1, T-2 and T-3 respectively. The phytoplankton, zooplankton and total plankton recorded in treatments with sanctuary were significantly higher (p<0.5) than the treatment without sanctuary (control) indicating positive impacts of sanctuaries on the production of plankton. Between two treatments of fish sanctuaries the total plankton populations were comparatively higher in T-2 than T-1.
Resumo:
Biological diversity of an ecosystem is considered a reliable measure of the state of health of the ecosystem. In Uganda's large lakes, the Victoria and Kyoga, the past three decades have been characterized by profound changes in fish species composition following the introduction of the piscivorous Nile perch (Oguto-Ohwayo 1990). Over 300 haplochromine cichlid species comprising a wide range of trophic groups were lost along with a host of non-cichlid fishes which occupied virtually all available ecological niches and in the lakes (Witte 1992). A second major ecological event has been the gradual nutrient enrichment of the water bodies (eutrophication) from diffuse and point sources, while at the same time pollutants have also gained entrance into the water systems in pace with indusfrial development and human population increases in the lake basins. Eutrophication and pollution have drastically altered the physical and-chemical character of the water medium in which different fauna and flora thrive. In Lake Victoria these alterations have resulted in changes of algal species composition from pristine community dominated by chlorophytes and diatoms (Melosira etc) to one composed largely of blue-green algae or Cyanobacteria (Microcystis, Anabaena, Planktolyngbya etc) (Mugidde 1993, Hecky 1993).
Fish species diversity in the Victoria and Kyoga lake basins: their conservation and sustainable use
Resumo:
Introduction of exotic fish species especially the Nile perch Lates niloticus, is believed to be responsible for the decline of fish species diversity in lakes Victoria, Kyoga and Nabugabo.About 60% of the haplochromine cichlids are thought to have become extinct from L. Victoria due to predation by the Nile perch. However there are many lakes satelite to the lakes Victoria and Kyoga basins which still have fish fauna similar to that of the main lakes. many of the satellite lakes are separated from the main lakes in, which Nile perch was introduced by extensive swamps that provide a barrier to Nile perch .A survey was carried out in a number of these satelite lakes and an inventory made of existing fish species. Their distribution and relative abundances were also determined. The lakes studied included Nawampasa, Nakuwa,Kawi Lamwa Gigate, Nyaguo, Agu, Nabugabo. Kayanja, Kaytigi, Mburo, Kachera and Wamala.Some habitats within the main lakes Victoria and Kyoga, especially those with rocky outcrops· and macrophyte cover that provide refugia for endangered species from Nile perch,were also surveyed) Various stations along the River Nile were also sampled to quantify the fish species that are still resent. Kyoga minor lakes were found to have the highest number of fish species especially of haplochromine cichlids. Many haplochromine trophic groups that were thought to be extinct from 1. Victoria still occur in these lakes.!Some of the satellite lakes, especially lakes Kayugi, Mburo and Kachera still contain .healili populations of oreochromis. I esculentus that could be used as brood stock in fish farming. Many of these lakes should .I ( I therefore be protected for conservation offish species diversity
Resumo:
Cichlids are known for their explosive radiation especially in the African Great Lakes marked with a high level of lake endemism. These fishes have been characterized mainly along trophic and habitat differences, by variation in morphological structures such as teeth and jaws and by differences in body shape and coloration. Cichlids are important as a microcosm of macroevolution. The explosive radiation, young evolutionary scale, and the isolation of groups characterized with high levels of endemism and presence of living fossils makes the group important for evolutionary and genetic studies. Lake Victoria region cichlids which are isolated and relatively more recent in evolution were the last to be appreciated in their diversity. Recently Ole Seehausen has found scores of rock fishes in Lake Victoria which were up to then thought to be absent from the Lake and only known to occur in Lakes Malawi and Tanganyika. Greenwood put together the species groups of Lake Victoria, and later in the early 1980's revised the classification of haplochromine species to reflect the phyletic origin and interrelationship of the various groups in Lake Victoria region. Melan Stiassny has been interested in early evolution of cichlids while the likes of Paul Fuerst and Lees Kaufman and Axel Meyer have been interested and are working to explain the speciation mechanisms responsible for the explosive radiation and evolution of cichlids. Locally S.B Wandera and his student Getrude Narnulemo are spearheading the biodiversity and taxonomic studies of cichlids in Lake Victoria region
Resumo:
Lake Albert contributes about 10% to the national fish production. It supports a multi-species fishery based on endemic species. To local fishermen, Lake Albert is a lifeline providing food and income.
Resumo:
Lakes Victoria and Kyoga had, a diverse fish fauna, which was important as food for local population and valuable in scientific studies. Over the past twenty years, the diversity of fish in these lakes had declined due to over-exploitation, introduction of new fish species including the piscivorous Nile perch and degradation of fish habitat. Studies of satellite lakes in the Victoria and Kyoga lake basins suggested that some of these lakes harboured species which had been lost from the main lakes. In order to better understand the extent, to which these satellite lakes may serve as refugia, a faunal survey was undertaken to determine the distribution and nature of the taxa found. Seven satellite lakes and the eastern end of the main Lake Kyoga adjacent to these minor lakes were surveyed over a two-year period for fish species diversity. A total of 68 fish species were recorded of which 41 were haplochromines. Almost all the native non cichlids which occurred in the main lakes (Victoria and Kyoga) before the Nile perch upsurge recorded. Lakes Nawampasa, Gigati, Kawi, Agu and Nyaguo had the highest fish species and trophic diversity. The trophic diversity of haplochromines (based on Shannon Weaver Index) was highest in Lake Nawampasa (1.28), followed by Gigati (1.25), Kawi (1.18), Agu (0.8), Lemwa (0.81), Nyaguo (0.35) and was lowest in the main Lake Kyoga. Potential threats to these lakes were from collectors of ornamental fish species, especially the haplochromines, the spread of the predatory Nile perch and the water hyacinth, which are already in Lake Kyoga, and the destruction of macrophytes through harvesting of papyrus and reclamation for agriculture. The human population around these lakes harvested the fishes for food but the levels of exploitation were still low because the lakes were adjacent to main Lake Kyoga, the major supply of fish. Ornamental fish dealers were encouraged to start captive breeding of the fish for export to reduce pressure on the lakes and demonstrations for breeding were set up at FIRI in Jinja. Meetings and seminars were held with some of the communities living around the lakes sampled and the importance of fish species found in these lakes and the dangers of destructive practices discussed. Representatives of all taxa of fish caught from the lakes were preserved, catalogued and stored in the FIRI Museum. Results from this survey support the motion that these satellite lakes are important refugia for endemic diversity. Based on survey, we recommend that SaIne of these lakes like Nawampasa, Gigati, Kawi, Agu and Nyaguo could be designated as conservation areas of species threatened in the main lakes. One of the factors that seem to have prevented the spread of Nile perch into Kyoga Minor lakes seems to have been the presence of extensive swamps around these lakes and the low oxygen levels that exist in these habitats. Clearing of swamps and vegetation that separate Kyoga minor lakes from the main lake should be avoided to prevent Nile perch from spreading into these lakes.
Resumo:
Satellite lakes and rivers in the Victoria and Kyoga basins provide a sanctuary for endangered native fish species. The structural heterogeneity of macrophyte covering these lakes has made it possible for most of the biodiversity to be kept intact. The Kyoga minor lakes have the highest fish species diversity especially of the haplochromines. Most fish communities of these satellite lakes are composed of native species.
Resumo:
Khark & Kharko Islands are the last Northern point for fringing coral reefs in Iranian side of the Persian Gulf. These Coralline habitats are the Protected Area and Wildlife Refugees with the total area of 2400 ha which located in the territory of Bushehr Province. This research carried out during 2006-2007 with monthly sampling from 12 stations, which selected around Islands and inshore waters with maximum depth of 20 meter. Sampling was conducted using by Bongo-Net plankton sampler with 500μ of mesh size. Totally, 1808 specimen from 45 family fish larvae was identified in studied area, including: 21 coralline fish larva families and 24 shore fish larvae such as pelagic and demersal fishes which some of them known as indicator, sentinel or endemic species for coral reef ecosystems. The results was shown that coral reef diversity in coral reefs (Khark & Kharko Islands) is more than other habitats such as estuary and river mouth, creeks, mangrove forest sites, and off shore water of the Persian Gulf and Oman Sea Iranian side. Among Identified families, Clupeidae, Blenniidae, Sillaginidae, Atherinidae and Tripterygiidae; with more abundance were dominant families in studied area. The pick of fish larvae abundance family were estimated in spring. There were significant differences between seasonally abundance and sub areas, but there were not significant differences in diversity indexes between Khark and Kharko stations with coastal stations (p< 0.05). The mean abundance of fish larvae were estimated 18.7083 larvae under 10m² of sea surface, and the mean diversity indexes and evenness were estimated 0.7135 and 0.565342 consequently, that was showed the area is under ecological stress for fish larvae, and wasn’t stable. Therefore, from the ecological point of view, only some of the fish larvae groups as like Clupeidae were dominant. Thus, they were the main cause of the fish larvae abundance change in studied area. Due to geographical location of Khark and Kharko Islands and among the environmental parameters, Its seems that the condition of sea current is the main cause for present or absent and distribution patterns of fish larvae in area. Abundance of fish larvae in west of Islands was higher than eastern parts in the spring. But this condition will be reversed in eastern part of Island and several coastal stations, so that the Islands surrounding clock wise current to cause fish larvae distribution patterns.
Resumo:
During the period from 2011 - 2015 with the aim of this study was to systematically review and in particular the revised classification of the Persian Gulf (and the Strait of Hormuz) and to obtain new information about the final confirmed list of fish species of Iranian waters of the Persian Gulf (and Hormuz Strait), samples of museums, surveys and sampling, and comparative study of all available sources and documentation was done. Classification systematic of sharks and batoids and bony fishes. Based on the results, the final list of approved fish of the Persian Gulf (including the Strait of Hormuz and Gulf of Oman border region) are 907 species in 157 families, of which 93 species of fish with 28 cartilaginous families (including 18 families with 60 species and 10 families with 34 species of shark and batoids); and 129 families with 814 species of bony fishes are. The presence of 11 new family with only one representative species in the area include Veliferidae, Zeidae, Sebastidae, Stomiidae, Dalatiidae, Zanclidae, Pempheridae, Lophiidae Kuhliidae, Etmoptridae and Chlorophthalmidae also recently introduced and approved. The two families based Creediidae Clinidae and their larvae samples for newly identified area. 62 families with mono-species and 25 families with more than 10 species are present including Gobiidae (53), Carangide (48), Labride (41), Blenniidae (34), Apogonidae (32) and Lutjanidae (31) of bony fishes, Carcharhinidae (26) of sharks and Dasyatidae (12) in terms of number of species of batoids most families to have their data partitioning. Also, 13 species as well as endemic species introduced the Persian Gulf and have been approved in terms of geographical expansion of the Persian Gulf are unique to the area.Two species of the family Poeciliidae and Cyprinodontidae have species of fresh water to the brackish coastal habitats have found a way;in addition to 11 types of families Carcharhinidae, Clupeidae, Chanidae, Gobidae, Mugilidae, Sparidae also as a species, with a focus on freshwater river basins in the south of the country have been found. In this study, it was found that out of 907 species have been reported from the study area, 294 species (32.4 %) to benthic habitats (Benthic habitats) and 613 species (67.6 %) in pelagic habitats (Pelagic habitats) belong. Coral reefs and rocky habitats in the range of benthic fish (129 species - 14.3 %) and reef associated fishes in the range of pelagic fishes (432 species – 47.8 %), the highest number and percentage of habitat diversity (Species habitats) have been allocated. As well as fish habitats with sea grass and algae beds in benthic habitat (17 species- 1.9 %) and pelagic - Oceanic (Open sea) in the whole pelagic fish (30 species – 3.3 %), the lowest number and percentage of habitat diversity into account. From the perspective of animal geography (Zoogeography) and habitat overlaps and similarities (Habitat overlapping) fish fauna of the Persian Gulf compared with other similar seas (tropical and subtropical, and warm temperate) in the Indian Ocean area - calm on the surface, based on the presence of certain species that the fish fauna of the Persian Gulf to the Red Sea and the Bay of Bengal (East Arabian Sea) compared to other regions in the Indian Ocean (Pacific) is closer (about 50%), and the Mediterranean (East area) and The Hawaiian Islands have the lowest overlap and similarity of habitat and species (about 10%).
Resumo:
We hypothesize that the richness and diversity of the biota in Lake Moraine (42°50’47”N, 75°31’39”W) in New York have been negatively impacted by 60 years of macrophyte and algae management to control Eurasian watermilfoil ( Myriophyllum spicatum L.) and associated noxious plants. To test this hypothesis we compare water quality characteristics, richness and selected indicators of plant diversity, zooplankton, benthic macroinvertebrates and fish in Lake Moraine with those in nearby Hatch Lake (42°50’06”N, 75°40’67”W). The latter is of similar size and would be expected to have similar biota, but has not been subjected to management. Measurements of temperature, pH, oxygen, conductivity, Secchi transparency, calcium, total phosphorus and nitrites + nitrates are comparable. Taxa richness and the diversity indices applied to the aquatic macrophytes are similar in both lakes. (PDF has 8 pages.)
Resumo:
Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)
Resumo:
Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages).