124 resultados para ecological responsibility
Resumo:
This cruise report is a summary of a field survey conducted in coastal-ocean waters off Florida from Anclote Key to West Palm Beach and from approximately 1 nautical mile (nm) offshore seaward to the shelf break (100 m). The survey was conducted May 15 - May 28, 2007 on NOAA Ship NANCY FOSTER Cruise NF-07-08-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 50 stations throughout the region including 10 stations within the Florida Keys National Marine Sanctuary (FKNMS) using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (PDF contains 34 pages
Resumo:
This cruise report is a summary of a field survey conducted in coastal-ocean waters of the Mid-Atlantic Bight from Nags Head, North Carolina to Cape Cod, Massachusetts and from approximately 1 nautical mile (nm) of shore seaward to the shelf break (100 m). The survey was conducted May 12 - May 21, 2006 on NOAA Ship NANCY FOSTER Cruise NF-06-06-NCCOS. Multiple indicators of ecological condition were sampled synoptically at each of 49 stations throughout the region using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, pH, sediment grain size, and organic carbon content. The overall purpose of the survey was to collect data to assess the status of ecological condition in coastal-ocean waters of the region, based on these various indicators, and to provide this information as a baseline for determining how environmental conditions may be changing with time. The results will be of value in helping to broaden our understanding of the status of ecological resources and their controlling factors, including impacts of potential ecosystem stressors, in such strategic coastal areas. (18pp.) (PDF contains 24 pages)
Resumo:
As part of an ongoing program of benthic sampling and related assessments of sediment quality at Gray’s Reef National Marine Sanctuary (GRNMS) off the coast of Georgia, a survey of soft-bottom benthic habitats was conducted in spring 2005 to characterize condition of macroinfaunal assemblages and levels of chemical contaminants in sediments and biota relative to a baseline survey carried out in spring 2000. Distribution and abundance of macrobenthos were related foremost to sediment type (median particle size, % gravel), which in turn varied according to bottom-habitat mesoscale features (e.g., association with live bottom versus flat or rippled sand areas). Overall abundance and diversity of soft-bottom benthic communities were similar between the two years, though dominance patterns and relative abundances of component species were less repeatable. Seasonal summer pulses of a few taxa (e.g., the bivalve Ervilia sp. A) observed in 2000 were not observed in 2005. Concentrations of chemical contaminants in sediments and biota, though detectable in both years, were consistently at low, background levels and no exceedances of sediment probable bioeffect levels or FDA action levels for edible fish or shellfish were observed. Near-bottom dissolved oxygen levels and organic-matter content of sediments also have remained within normal ranges. Highly diverse benthic assemblages were found in both years, supporting the premise that GRNMS serves as an important reservoir of marine biodiversity. A total of 353 taxa (219 identified to species) were collected during the spring 2005 survey. Cumulatively, 588 taxa (371 identified to species) have been recorded in the sanctuary from surveys in 2000, 2001, 2002, and 2005. Species Accumulation Curves indicate that the theoretical maximum should be in excess of 600 species. Results of this study will be of value in advancing strategic science and management goals for GRNMS, including characterization and long-term monitoring of sanctuary resources and processes, as well as supporting evolving interests in ecosystem-based management of the surrounding South Atlantic Bight (SAB) ecosystem. (PDF contains 46 pages)
Resumo:
Fish collections under varying ecological conditions were made by trawling and seining, monthly and quarterly in depths of <1 m to depths of 3 m of the Florida Bay portion of Everglades National Park, Florida. From May 1973 through September 1976, a total of 182,530 fishes representing 128 species and 50 families were taken at 27 stations. An additional 21 species were identified from sportfish-creel surveys and supplemental observations. Most of the species collected were juveniles of species that occur as adults in the Florida Bay creel census survey, or were small species that were seasonal residents. Marked temporal and spatial abundance of the catches was observed. The greatest numbers and biomass of the fishes occurred in the wet season (summer/fall), whereas lowest numbers and biomass appeared during the dry season (winter/spring) The greatest abundance and diversity of fishes was found in western Florida Bay followed by eastern and central Bay regions respectively. Overall, five species comprised 75% of the numerical total while eleven species made up 75% of the total biomass. Collections were dominated numerically by anchovies (Engraulidae), especially Anchoa mitchilli, in western Florida Bay. Mojarras (Gerridae), mostly silver jenny Eucinostomus gula, and porgies (Sparidae), especially pinfish Lagodon rhomboides, dominated numerically in central and eastern portions of the Bay, respectively. Except for salinity, other measured physico-chemical parameters (water temperature, pH, dissolved oxygen, and turbidity) showed no variation beyond ranges considered normal for shallow, tropical marine environments. Salinity varied from 0 to 66 ppt near the mainland. Nearshore hypersaline conditions (>45 ppt) persisted for nearly 2 years during the 1974 - 1975 severe drought period. Significant reductions in fish abundance/diversity were observed in relation to hypersaline conditions. Bay-wide macrobenthic communities were mapped (presence/absence) and were primarily comprised of turtle grass (Thalassia), shoalgrass [(Diplanthera = (Halodule)], and/or green algae Penicillus. Seasonal dieoff of seagrasses was observed in north-central Florida Bay. (PDF contains 107 pages)
Resumo:
A literature review was conducted to locate information on the flow of energy from primary producers to the fishery stocks of the Puerto Rican-Virgin Islands insular shelf. This report uses site-specific information to describe the major ecological subsystems, or habitats, of the region, to identify the more common species and the subsystems in which they occur, to quantify productivity and biomass, and to outline trophic relationships. Discussions on each topic and subsystem vary in substance and detail, being limited by the availability and accessibility of information. (PDF contains 189 pages) Seven distinct subsystems are described: mangrove estuary, seagrass bed, coral reef, algal plain, sand/mud bottom, shelf break, and overlying pelagic. Over 50 tables provide lists of species found in each habitat on various surveys dating back to 1956. Estimates of density, relative abundance, and productivity are provided when possible. We evaluated whether sufficient information exists to support an analysis of the energy basis of fishery production in the area, beginning with the design and development of an ecosystem model. Data needs in three categories - species lists, biomass, and trophic relations - were examined for each subsystem and for each of three species groups - primary producers, invertebrates, and fish. We concluded that adequate data, sufficient for modeling purposes, are available in 16 (25%) of 64 categories; limited data, those requiring greater extrapolation, are available in 35 (55%) categories; and no data are available in 13 (20%) categories. The best-studied subsystems are seagrass beds and coral reefs, with at least limited data in all categories. Invertebrates, the intermediate link in the food web between primary producers and fishes, are the least quantified group in the region. Primary production and fishes, however, are relatively well-studied, providing sufficient data to support an ecosystem-level analysis and to initiate a modeling effort.
Resumo:
Almost 120 days at sea aboard three NOAA research vessels and one fishing vessel over the past three years have supported biogeographic characterization of Tortugas Ecological Reserve (TER). This work initiated measurement of post-implementation effects of TER as a refuge for exploited species. In Tortugas South, seafloor transect surveys were conducted using divers, towed operated vehicles (TOV), remotely operated vehicles (ROV), various sonar platforms, and the Deepworker manned submersible. ARGOS drifter releases, satellite imagery, ichthyoplankton surveys, sea surface temperature, and diver census were combined to elucidate potential dispersal of fish spawning in this environment. Surveys are being compiled into a GIS to allow resource managers to gauge benthic resource status and distribution. Drifter studies have determined that within the ~ 30 days of larval life stage for fishes spawning at Tortugas South, larvae could reach as far downstream as Tampa Bay on the west Florida coast and Cape Canaveral on the east coast. Together with actual fish surveys and water mass delineation, this work demonstrates that the refuge status of this area endows it with tremendous downstream spillover and larval export potential for Florida reef habitats and promotes the maintenance of their fish communities. In Tortugas North, 30 randomly selected, permanent stations were established. Five stations were assigned to each of the following six areas: within Dry Tortugas National Park, falling north of the prevailing currents (Park North); within Dry Tortugas National Park, falling south of the prevailing currents (Park South); within the Ecological Reserve falling north of the prevailing currents (Reserve North); within the Ecological Reserve falling south of the prevailing currents (Reserve South); within areas immediately adjacent to these two strata, falling north of the prevailing currents (Out North); and within areas immediately adjacent to these two strata, falling south of the prevailing currents (Out South). Intensive characterization of these sites was conducted using multiple sonar techniques, TOV, ROV, diver-based digital video collection, diver-based fish census, towed fish capture, sediment particle-size, benthic chlorophyll analyses, and stable isotope analyses of primary producers, fish, and, shellfish. In order to complement and extend information from studies focused on the coral reef, we have targeted the ecotone between the reef and adjacent, non-reef habitats as these areas are well-known in ecology for indicating changes in trophic relationships at the ecosystem scale. Such trophic changes are hypothesized to occur as top-down control of the system grows with protection of piscivorous fishes. Preliminary isotope data, in conjunction with our prior results from the west Florida shelf, suggest that the shallow water benthic habitats surrounding the coral reefs of TER will prove to be the source of a significant amount of the primary production ultimately fueling fish production throughout TER and downstream throughout the range of larval fish dispersal. Therefore, the status and influence of the previously neglected, non-reef habitat within the refuge (comprising ~70% of TER) appears to be intimately tied to the health of the coral reef community proper. These data, collected in a biogeographic context, employing an integrated Before-After Control Impact design at multiple spatial scales, leave us poised to document and quantify the postimplementation effects of TER. Combined with the work at Tortugas South, this project represents a multi-disciplinary effort of sometimes disparate disciplines (fishery oceanography, benthic ecology, food web analysis, remote sensing/geography/landscape ecology, and resource management) and approaches (physical, biological, ecological). We expect the continuation of this effort to yield critical information for the management of TER and the evaluation of protected areas as a refuge for exploited species. (PDF contains 32 pages.)
Resumo:
Marine reserves, often referred to as no-take MPAs, are defined as areas within which human activities that can result in the removal or alteration of biotic and abiotic components of an ecosystem are prohibited or greatly restricted (NRC 2001). Activities typically curtailed within a marine reserve are extraction of organisms (e.g., commercial and recreational fishing, kelp harvesting, commercial collecting), mariculture, and those activities that can alter oceanographic or geologic attributes of the habitat (e.g., mining, shore-based industrial-related intake and discharges of seawater and effluent). Usually, marine reserves are established to conserve biodiversity or enhance nearby fishery resources. Thus, goals and objectives of marine reserves can be inferred, even if they are not specifically articulated at the time of reserve formation. In this report, we review information about the effectiveness of the three marine reserves in the Monterey Bay National Marine Sanctuary (Hopkins Marine Life Refuge, Point Lobos Ecological Reserve, Big Creek Ecological Reserve), and the one in the Channel Islands National Marine Sanctuary (the natural area on the north side of East Anacapa Island). Our efforts to objectively evaluate reserves in Central California relative to reserve theory were greatly hampered for four primary reasons; (1) few of the existing marine reserves were created with clearly articulated goals or objectives, (2) relatively few studies of the ecological consequences of existing reserves have been conducted, (3) no studies to date encompass the spatial and temporal scope needed to identify ecosystem-wide effects of reserve protection, and (4) there are almost no studies that describe the social and economic consequences of existing reserves. To overcome these obstacles, we used several methods to evaluate the effectiveness of subtidal marine reserves in Central California. We first conducted a literature review to find out what research has been conducted in all marine reserves in Central California (Appendix 1). We then reviewed the scientific literature that relates to marine reserve theory to help define criteria to use as benchmarks for evaluation. A recent National Research Council (2001) report summarized expected reserve benefits and provided the criteria we used for evaluation of effectiveness. The next step was to identify the research projects in this region that collected information in a way that enabled us to evaluate reserve theory relative to marine reserves in Central California. Chapters 1-4 in this report provide summaries of those research projects. Contained within these chapters are evaluations of reserve effectiveness for meeting specific objectives. As few studies exist that pertain to reserve theory in Central California, we reviewed studies of marine reserves in other temperate and tropical ecosystems to determine if there were lessons to be learned from other parts of the world (Chapter 5). We also included a discussion of social and economic considerations germane to the public policy decision-making processes associated with marine reserves (Chapter 6). After reviewing all of these resources, we provided a summary of the ecological benefits that could be expected from existing reserves in Central California. The summary is presented in Part II of this report. (PDF contains 133 pages.)
Resumo:
In Central California, and elsewhere around the world, a great deal of discussion is occurring about the use of marine protected areas (MPAs) as a tool to help manage marine resources. This discussion is taking place because there is growing evidence that humans have depleted marine resources in many parts of the world, often despite strong regulatory efforts. Moreover, there is also mounting evidence that the degradation of marine resources began long ago, and we do not fully realize how much humans have altered “natural” environments. This uncertainty has led people to discuss the use of MPAs as a precautionary tool to prevent depletion or extinction of marine resources, and as a means of redressing past damages. The discussion about the use of marine reserves is increasing in intensity in California because several resource management agencies are considering reserves as they create or revise management plans. Often, the discussions surrounding this important public policy debate lead to questions about the biological or ecological value of existing marine protected areas. More than 100 MPAs exist along the coast of California. Many of these were established arbitrarily and lack specific purposes. Some California marine protected areas also have co-occurring or overlapping boundaries, have conflicting designations for use, and have conflicting rules and regulations. Because few of the existing marine protected areas have clearly articulated goals or objectives, however, it is difficult or impossible to evaluate their ecological effectiveness. (PDF contains 18 pages.)
Resumo:
The Tortugas South Ecological Reserve, located along the margin of the southwest Florida carbonate platform, is part of the largest no-take marine reserve in the U.S. Established in July 2001, the reserve is approximately 206 km2 in area, and ranges in depths from 30 m at Riley’s Hump to over 600 m at the southern edge of the reserve. Geological and biological information for the Tortugas South Reserve is lacking, and critical for management of the area. Bathymetric surveys were conducted with a Simrad EM 3000 multibeam echosounder at Riley’s Hump and Miller’s Ledge, located in the northern and central part of the reserve. Resulting data were used to produce basemaps to obtain geological ground truth and visual surveys of biological communities, including reef fishes. Visual surveys were conducted using SCUBA and the Phantom S2 Remotely Operated Vehicle (ROV) at Riley’s Hump. Visual surveys were conducted using the ROV and the Deepworker 2000 research submersible along Miller’s Ledge, within and outside of the reserve. A total of 108 fishes were recorded during SCUBA, ROV, and submersible observations. Replicate survey transects resulted in over 50 fishes documented at Miller’s Ledge, and eight of the top ten most abundant species were planktivores. Many species of groupers, including scamp (Mycteroperca phenax), red grouper (Epinephelus morio), snowy grouper (E. niveatus), speckled hind (E. drummondhayi), and Warsaw grouper (E. nigritus), are present in the sanctuary. Numerous aggregations of scamp and a bicolor phase of the Warsaw grouper were observed, indicating the importance of Miller’s Ledge as a potential spawning location for both commercially important and rare deep reef species, and as a potential source of larval recruits for the Florida Keys and other deep reef ecosystems of Florida
Resumo:
Resulted from a occasional field trips on the Patuxent River, 1964-1968. Taxonomy and ecology survey following the quarter method (Cottam and Curtis, 1956) Includes: Literature review: Forests, soils, ecology; Materials and Methods: location, criteria, map of Calvert county; Results: descriptive, species of trees sampled; soils, ecology; discussion: vegetational, soils, ecology; Summary; Climate; Physical features of Calvert County; Botanical descriptions; Tables, Current checklist of vascular plants; selective bibliography
Resumo:
Assateague Island is an offshore bar comprising the south-eastern coast of Maryland and the northeastern coast of Virgina. It is part of the system of discontinuous barrier reefs or bars which occupy most of the Atlantic shoreline from Florida to Massachusetts. These are unstable bars, continuously influenced by storm winds and tides which provide a distinct and rigorous habitat for the vegetation there. General floras of the Delmarva Peninusla do not mention Assateague Island specifically. The objective is to prepare a catalog of the vascular plants of Assateague Island and to describe the communities in which they are found, in the hope it will add to the knowledge of barrier reef vegetation.
Resumo:
Bi-weekly phytoplankton samples were collected at 0, 10, and 20 m and enumerated by the Utermöhl sedimentation technique; 14C productivity measurements at 10 m, oblique zooplankton tows, and routine hydrographic observations were also made. Northerly winds induce upwelling during December-April, followed by a rainy season; a slight resurgence in upwelling may occur during July and/or August. Annual variations in upwelling intensity and rainfall occur. During upwelling, the upper 50 m, about 30 per cent of the total volume of the Gulf of Panama, is replaced with water 5 to 10 C colder than the more stratified, turbid and nutrient impoverished watermass present during the rainy season. The mean annual runoff accompanying an average annual precipitation of 2731 mm is estimated to equal a layer of fresh water 3.2 m thick. About 10 per cent of the phytoplankton phosphate and inorganic nitrogen requirements during the rainy season are accreted. (PDF contains 260 pages.)
Resumo:
This paper examines the data recently collected from Lake Victoria (SEDAWOG, 2000a). In the first section, it provides the results from the survey that examines fishermen's perceptions of the status of the resource base. In the second section, it starts with an examination of boundaries, followed by an examination of these data insofar as they relate to fishermen's understanding of roles. We conclude the paper with a brief discussion of what these findings mean for fisheries management on Lake Victoria in particular, and our understanding of co-managerial applications more generally
Resumo:
The paper discusses the status of the Tiga Reservoir Fishery pre-and Clupeid transplantation. This was achieved by examining the species diversity, abundance and distribution with mitigating factors. It concludes with a verdict on the achievement of the transplantation exercise
Resumo:
The common hippopotamus (Hippopotamus amphibious Linn. 1758) contributes to the productivity of aquatic systems where it lives. This paper reviews ecological roles of the hippo in this regard. Desk review of available literature information complemented with field observations were employed in the data collection. The ecological roles of the common hippopotamus being presented draw examples from East, West, Central and South African sub regions. The nutritional importance of the amphibious hippopotamus to rural communities was highlighted. In Southern Ethiopia, the Bodi, Bacha and Mura tribes eat hippo meat and this has led to severe hunting consequences on the wild populations of the animal. The important relationships between the hippopotamus and fish were presented. Hippopotamuses usually defecate in water and their excrements enrich the nutrients in the water resulting in favourable conditions for large fish populations. Some fish, including Labeo spp. were observed to feed on the micro-organisms and algae that grow on the skin of the hippotamus. A strong case was made for hippo-cum-fish integrated farm development in Nigeria based on ecological relationships so observed between the amphibious mammals and fish. This is one of the meeting points of fisheries and wildlife management that should be exploited for the benefits of the teeming Nigerian population