28 resultados para collaborative projects
Resumo:
A collaborative project in developing a broad-based coastal management training program in the Philippines is being undertaken by a group of government and nongovernment agencies. It addresses the lack of expertise in planning an implementation for coastal management in the country. The process will be documented to serve as a guide in starting and maintaining the process of collaborative training in coastal management in the region. Other training initiatives are outlined including regional and global efforts.
Resumo:
The different computer softwares developed by the International Center for Living Aquatic Resources (ICLARM) and its functions and uses in fisheries science are presented.
Resumo:
The benefits of decentralizing the management of coastal resources to local governments and resource users have long been recognized, but the best systems for coastal resources management depend on many factors. A number of community-based management and co-management projects were started in the Philippines in the early 1980s. This report describes a comparative assessment of these projects to determine where improvements can be made in the design of future community-based coastal resource management projects. Early and continuing involvement by project beneficiaries is one of the factors that contributes to the success of the project development, implementation, and evaluation.
Resumo:
ABSTRACT—Bycatch mortality of Pacific halibut, Hippoglossus stenolepis, in nontarget fisheries is composed primarily of immature fish, and substantial reductions in yield to directed halibut fisheries result from this bycatch. Distant-water bottomtrawl fleets operating off the North American coast, beginning in the mid 1960’s, experienced bycatch mortality of over 12,000 t annually. Substantial progress on reducing this bycatch was not achieved until the of extension fisheries jurisdictions by the United States and Canada in 1977. Bycatch began to increase again during the expansion of domestic catching capacity for groundfish, and by the early 1990’s it had returned to levels seen during the period of foreign fishing. Collaborative action by Canada and the United States through the International Pacific Halibut Commission has resulted in substantial reductions in bycatch mortality in some areas. Methods of control have operated at global, fleet, and individual vessel levels. We evaluate the hierarchy of effectiveness for these control measures and identify regulatory needs for optimum effects. New monitoring technologies offer the promise of more cost-effective approaches to bycatch reduction.
Resumo:
This is the Species management in aquatic Habitats overview of sub projects and their management produced by the Environment Agency in 1998. This report was under the R&D Project, which it was initiated in 1995 to provide information on species of conservation value of particular relevance to the Environment Agency (then the National Rivers Authority, NRA), in relation to its activities affecting aquatic environments. Outputs comprise Species Action Plans (SAPs), practical management guidelines for Agency staff and third parties, and various research and survey outputs to improve the knowledge base on the status and ecological requirements of priority species. This R&D Technical Report provides an overview of the work undertaken, additionally identifying lessons to be learnt in the management of species-related research within the framework of the UK Biodiversity Action Plan. The process of species selection was initially based upon a wide ranging review of priority species of relevance to the then NRA, encompassing both highly threatened species and species that are relatively common but are at particular risk from Agency activities.
Resumo:
This Guidance Note presents a simple approach to analyzing the governance context for development of aquatic agricultural systems; it is intended as an aid to action research, and a contribution to effective program planning and evaluation. It provides a brief introduction to the value of assessing governance collaboratively, summarizes an analytical framework, and offers practical guidance on three stages of the process: identifying obstacles and opportunities, debating strategies for influence, and planning collaborative actions.
Resumo:
Long-term living resource monitoring programs are commonly conducted globally to evaluate trends and impacts of environmental change and management actions. For example, the Woods Hole bottom trawl survey has been conducted since 1963 providing critical information on the biology and distribution of finfish and shellfish in the North Atlantic (Despres-Patango et al. 1988). Similarly in the Chesapeake Bay, the Maryland Department of Natural Resources (MDNR) Summer Blue Crab Trawl survey has been conducted continuously since 1977 providing management-relevant information on the abundance of this important commercial and recreational species. A key component of monitoring program design is standardization of methods over time to allow for a continuous, unbiased data set. However, complete standardization is not always possible where multiple vessels, captains, and crews are required to cover large geographic areas (Tyson et al. 2006). Of equal issue is technological advancement of gear which serves to increase capture efficiency or ease of use. Thus, to maintain consistency and facilitate interpretation of reported data in long-term datasets, it is imperative to understand and quantify the impacts of changes in gear and vessels on catch per unit of effort (CPUE). While vessel changes are inevitable due to ageing fleets and other factors, gear changes often reflect a decision to exploit technological advances. A prime example of this is the otter trawl, a common tool for fisheries monitoring and research worldwide. Historically, trawl nets were constructed of natural materials such as cotton and linen. However modern net construction consists of synthetic materials such as polyamide, polyester, polyethylene, and polypropylene (Nielson et. al. 1983). Over the past several decades, polyamide materials which will be referred to as nylon, has been a standard material used in otter trawl construction. These trawls are typically dipped into a latex coating for increased abrasion resistance, a process that is referred to as “green dipped.” More recently, polyethylene netting has become popular among living resource monitoring agencies. Polyethylene netting, commonly known as sapphire netting, consists of braided filaments that form a very durable material more resistant to abrasion than nylon. Additionally, sapphire netting allows for stronger knot strength during construction of the net further increasing the net’s durability and longevity. Also, sapphire absorbs less water with a specific gravity near 0.91 allowing the material to float as compared to nylon with specific gravity of 1.14 (Nielson et. al. 1983). This same property results in a light weight net which is more efficient in deployment, retrieval and fishing of the net, particularly when towing from small vessels. While there are many advantages to the sapphire netting, no comparative efficiency data is available for these two trawl net types. Traditional nylon netting has been used consistently for decades by the MDDNR to generate long term living resource data sets of great value. However, there is much interest in switching to the advanced materials. In addition, recent collaborative efforts between MDNR and NOAA’s Cooperative Oxford Laboratory (NOAA-COL) require using different vessels for trawling in support of joint projects. In order to continue collaborative programs, or change to more innovative netting materials, the influence of these changes must be demonstrated to be negligible or correction factors determined. Thus, the objective of this study was to examine the influence of trawl net type, vessel type, and their interaction on capture efficiency.
Resumo:
In the past decade, increased awareness regarding the declining condition of U.S. coral reefs has prompted various actions by governmental and non-governmental organizations. Presidential Executive Order 13089 created the U.S. Coral Reef Task Force (USCRTF) in 1998 to coordinate federal and state/territorial activities (Clinton, 1998), and the Coral Reef Conservation Act of 2000 provided Congressional funding for activities to conserve these important ecosystems, including mapping, monitoring and assessment projects carried out through the support of NOAA’s CRCP. Numerous collaborations forged among federal agencies and state, local, non-governmental, academic and private partners now support a variety of monitoring activities. This report shares the results of many of these monitoring activities, relying heavily on quantitative, spatially-explicit data that has been collected in the recent past and comparisons with historical data where possible. The success of this effort can be attributed to the dedication of over 270 report contributors who comprised the expert writing teams in the jurisdictions and contributed to the National Level Activities and National Summary chapters. The scope and content of this report are the result of their dedication to this considerable collaborative effort. Ultimately, the goal of this report is to answer the difficult but vital question: what is the condition of U.S. coral reef ecosystems? The report attempts to base a response on the best available science emerging from coral reef ecosystem monitoring programs in 15 jurisdictions across the country. However, few monitoring programs have been in place for longer than a decade, and many have been initiated only within the past two to five years. A few jurisdictions are just beginning to implement monitoring programs and face challenges stemming from a lack of basic habitat maps and other ecosystem data in addition to adequate training, capacity building, and technical support. There is also a general paucity of historical data describing the condition of ecosystem resources before major human impacts occurred, which limits any attempt to present the current conditions within an historical context and contributes to the phenomenon of shifting baselines (Jackson, 1997; Jackson et al., 2001; Pandolfi et al., 2005).