54 resultados para artificially expanded genetic information system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three of California’s four National Marine Sanctuaries, Cordell Bank, Gulf of the Farallones, and Monterey Bay, are currently undergoing a comprehensive management plan review. As part of this review, NOAA’s National Marine Sanctuary Program (NMSP) has collaborated with NOAA’s National Centers for Coastal Ocean Science (NCCOS) to conduct a biogeographic assessment of selected marine resources using geographic information system (GIS) technology. This report complements the analyses conducted for this effort by providing an overview of the physical and biological characteristics of the region. Key ecosystems and species occurring in estuarine and marine waters are highlighted and linkages between them discussed. In addition, this report describes biogeographic processes operating to affect species’ distributional patterns. The biogeographic analyses build upon this background to further understanding of the biogeography of this region. (PDF contaons 172 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In September 2002, side scan sonar was used to image a portion of the sea floor in the northern OCNMS and was mosaiced at 1-meter pixel resolution using 100 kHz data collected at 300-meter range scale. Video from a remotely-operated vehicle (ROV), bathymetry data, sedimentary samples, and sonar mapping have been integrated to describe geological and biological aspects of habitat and polygon features have been created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). The data can be used with geographic information system (GIS) software for display, query, and analysis. Textural analysis of the sonar images provided a relatively automated method for delineating substrate into three broad classes representing soft, mixed sediment, and hard bottom. Microhabitat and presence of certain biologic attributes were also populated into the polygon features, but strictly limited to areas where video groundtruthing occurred. Further groundtruthing work in specific areas would improve confidence in the classified habitat map. (PDF contains 22 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The STREAM Initiative is a process rather than a project, and its focus is on learning and building on learning, not the achievement of pre-determined objectives. An overarching goal of STREAM is to facilitate changes that support poor people who manage aquatic resources. A key objective of STREAM is policy change, which in itself is complex and difficult to monitor. Two further layers of complexity relate to the regional scope of the Initiative and the collaborative involvement of stakeholders, all of which need to be accountable for their work. The objectives of this workshop are consistent with the aims of the STREAM Initiative and can be summerized as follows: 1- Familiarizing everyone in the regional STREAM Initiative with work being done in process monitoring and significant change. 2- Discussion and development of a practical information system that enables (i) the monitoring of development processes and significant changes occurring within the STREAM Initiative, and (ii) learning to inform STREAM implementation and other stakeholders. (PDF has 59 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This regional atlas summarizes and illustrates the distribution and abundance patterns of fish eggs and larvae of 102 taxa within 34 families found in the Northeast Pacific Ocean including the Bering Sea, Gulf of Alaska, and U.S. west coast ecosystems. Data were collected over a 20+ year period (1972–1996) by the Recruitment Processes Program of the Alaska Fisheries Science Center (AFSC). Ichthyoplankton catch records used in this atlas were generated from 11,379 tows taken during 100 cruises. For each taxon, general life history data are briefly summarized from the literature. Published information on distribution patterns of eggs and larvae are reviewed for the study area. Data from AFSC ichthyoplankton collections were combined to produce an average spatial distribution for each taxon. These data were also used to estimate mean abundance and percent occurrence by year and month, and relative abundance by larval length and season. Abundance from each tow was measured as catch per 10 m2 surface area. A larval distribution and abundance map was produced with a geographic information system using ArcInfo software. For taxa with identifiable pelagic eggs, distribution maps showing presence or absence of eggs are presented. Presence or absence of adults in the study area is mapped based on recent literature and data from AFSC groundfish surveys. Distributional records for adults and early life history stages revealed several new range extensions. (PDF file contains 288 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXECUTIVE SUMMARY: The Coastal Change Analysis Programl (C-CAP) is developing a nationally standardized database on landcover and habitat change in the coastal regions of the United States. C-CAP is part of the Estuarine Habitat Program (EHP) of NOAA's Coastal Ocean Program (COP). C-CAP inventories coastal submersed habitats, wetland habitats, and adjacent uplands and monitors changes in these habitats on a one- to five-year cycle. This type of information and frequency of detection are required to improve scientific understanding of the linkages of coastal and submersed wetland habitats with adjacent uplands and with the distribution, abundance, and health of living marine resources. The monitoring cycle will vary according to the rate and magnitude of change in each geographic region. Satellite imagery (primarily Landsat Thematic Mapper), aerial photography, and field data are interpreted, classified, analyzed, and integrated with other digital data in a geographic information system (GIS). The resulting landcover change databases are disseminated in digital form for use by anyone wishing to conduct geographic analysis in the completed regions. C-CAP spatial information on coastal change will be input to EHP conceptual and predictive models to support coastal resource policy planning and analysis. CCAP products will include 1) spatially registered digital databases and images, 2) tabular summaries by state, county, and hydrologic unit, and 3) documentation. Aggregations to larger areas (representing habitats, wildlife refuges, or management districts) will be provided on a case-by-case basis. Ongoing C-CAP research will continue to explore techniques for remote determination of biomass, productivity, and functional status of wetlands and will evaluate new technologies (e.g. remote sensor systems, global positioning systems, image processing algorithms) as they become available. Selected hardcopy land-cover change maps will be produced at local (1:24,000) to regional scales (1:500,000) for distribution. Digital land-cover change data will be provided to users for the cost of reproduction. Much of the guidance contained in this document was developed through a series of professional workshops and interagency meetings that focused on a) coastal wetlands and uplands; b) coastal submersed habitat including aquatic beds; c) user needs; d) regional issues; e) classification schemes; f) change detection techniques; and g) data quality. Invited participants included technical and regional experts and representatives of key State and Federal organizations. Coastal habitat managers and researchers were given an opportunity for review and comment. This document summarizes C-CAP protocols and procedures that are to be used by scientists throughout the United States to develop consistent and reliable coastal change information for input to the C-CAP nationwide database. It also provides useful guidelines for contributors working on related projects. It is considered a working document subject to periodic review and revision.(PDF file contains 104 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIGHLIGHTS FOR FY 2006 1. Captured and tagged 475 Gulf sturgeons in five Florida rivers and one bay. 2. Documented Gulf sturgeon marine movement and habitat use in the Gulf of Mexico. 3. Assisted the National Oceanic and Atmospheric Administration (NOAA) with the collection of Gulf sturgeon, implantation of acoustic tags, and monitoring of fish in a study to examine movement patterns and habitat use in Pensacola and Choctawhatchee bays post-Hurricane Ivan. 4. Provided technical assistance to Jon “Bo” Sawyer in completing a study – Summer Resting Areas of the Gulf Sturgeon in the Conecuh/Escambia River System, Alabama-Florida – for acquiring a Degree of Master of Science at Troy University, Alabama. 5. Coordinated tagging and data collection with NOAA observers aboard trawlers while collecting Gulf sturgeon during dredging operations in the coastal Gulf of Mexico. 6. Hosted the 7th Annual Gulf Sturgeon Workshop. 7. Implemented Gulf Striped Bass Restoration Plan by coordinating the 23rd Annual Morone Workshop, leading the technical committee, transporting broodfish, coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system, and evaluating post-stocking success. 8. Continued updating and managing the Freshwater Mussel Survey Database, a Geographic Information System (GIS) database, for over 800 unique sites in the Northeast Gulf (NEG) drainages in Alabama (AL), Georgia (GA), and Florida (FL). 9. Formed a recovery implementation team for listed mussels in the ACF river basin and oversaw grant cooperative agreements for 14 listed and candidate freshwater mussels in the NEG watersheds. 10. Initiated a project in the Apalachicola River to relocate mussels stranded as a result of drought conditions, and calculate river flows at which mussels would be exposed. 11. Initiated a project in Sawhatchee Creek, Georgia to determine the status of threatened and endangered (T&E) freshwater mussels and target restoration projects, population assessments, and potential population augmentation to lead toward recovery of the listed species. 12. Initiated a study to determine the age and growth of the endangered fat threeridge mussel (Amblema neislerii). 13. Provided technical assistance to the Panama City Ecological Services office for a biological opinion on the operations of Jim Woodruff Lock and Dam and its effects on the listed species and designated and proposed critical habitat in the Apalachicola River, Florida. 14. Assisted with a multi-State, inter-agency team to develop a management plan to restore the Alabama shad in the ACF river system. 15. Conducted fishery surveys on Tyndall AFB, Florida and Ft. Benning, Georgia and completed a report with recommendations for future recreational fishery needs. 16. Provided fishery technical assistance to four National Wildlife Refuges (NWR) (i.e., Okefenokee NWR, Banks Lake NWR, St. Vincent NWR, and St. Marks NWR). 17. Initiated an Aquatic Resources and Recreation Fishing Survey on Department of Defense facilities located in Region 4. 18. Identified 130 road-stream crossings on Eglin AFB for rehabilitation and elimination of sediment imputs. 19. Continued the Aquatics Monitoring Program at Eglin AFB to assess techniques that determine current status and sustainability of aquatic habitat and develop a measure to determine quality or degradation of habitat. 20. Assisted Eglin AFB Natural Resource managers in revising the installation’s Integrated Natural Resources Management Plan (INRMP) and its associated component plans. 21. Coordinated recovery efforts for the endangered Okaloosa darter including population/life history surveys, stream restoration, and outreach activities. 22. Initiated a comprehensive status review of the Okaloosa darter with analyses performed to assess available habitat, preferred habitats, range expansions/reductions/fragmentations, population size, and probability of extinction. 23. Assisted the Gulf Coastal Plain Ecosystem Partnership and the Florida Fish and Wildlife Conservation Commission (FWC) under a Memorandum of Agreement to develop conservation strategies, implement monitoring and assessment programs, and secure funds for aquatic management programs in six watersheds in northwest Florida and southeast Alabama. 24. Entered into a cooperative agreement with the U.S. Air Force to encourage the conservation and rehabilitation of natural resources at Hurlburt Field, Florida. 25. Multiple outreach projects were completed to detail aquatic resources’ conservation needs and opportunities; including National Fishing Week, Earth Day, several festivals, and school outreach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distribution of the genus Anodontites (Mollusca: Bivalvia: Mycetopodidae) in Uruguay. Seven species of the freshwater mussel genus Anodontites were recorded from Uruguay. The populations of these bivalves suffer the negative effects of invasive bivalves, damming, industrial and urban discharges, and agrotoxic runoff. The distribution of these species is generally characterized at the level of basin or politic divisions, and precise geographic records are scarce. In order to detail the distribution of those species, the most representative collections of Uruguay were examined, the material of Anodontites was identified (612 records) and geographic coordenates were assigned at each locality (213 localities), using Geographic Information System (GIS) to obtain a distribution map for each species. Most of the localities with Anodontites were located in the left margin of Uruguay River and southwest of Uruguay, mainly in Soriano, Artigas, Salto and Colonia departments. The Salto Grande basin presented the highest species richness. The species with a highest number of records was A. patagonicus, which was also recorded in all basins. A. trapesialis and A. tenebricosus had a wide distribution and a high number of records. A. lucidus and A. ferrarisii, had a wide distribution (more than 6 basins) but comparatively lower number of records. Finally A. trapezeus and A. trigonus showed a limited distribution. There is a critical lack of samples in Merín Lagoon, Atlantic and Upper Negro River basins. It is necessary to carry out new sampling considering many variables in order to evaluate the current distribution and the ecologic preferences for each species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this time of scarce resources, coastal resource managers must find ways to prioritize conservation, land use, and restoration efforts. The Habitat Priority Planner (HPP) is a free geospatial tool created by the National Oceanic and Atmospheric Administration’s Coastal Services Center that has received wide praise for its ease of use and broad applicability to conservation strategic planning, restoration, climate change scenarios, and other natural resource management actions. Not a geographic information system (GIS) user? Don’t worry―this tool was designed to be used in a team setting. One intermediate-level GIS user can push the buttons to show quick results while a roomful of resource managers and stakeholders provide input criteria that determine the results. The Habitat Priority Planner is a toolbar for ESRI’s ArcGIS platform that is composed of three modules: Habitat Classification, Habitat Analysis, and Data Explorer. The tool calculates basic ecological statistics that are used to examine how habitats function within a landscape. The tool pre‐packages several common landscape metrics into a user‐friendly interface for intermediate GIS users. In addition, HPP allows the user to build queries interactively using a graphical interface for demonstrating criteria selections quickly in a visual manner that is useful in stakeholder interactions. Tool advocates and users include land trusts, conservation alliances, nonprofit organizations, and select National Estuarine Research Reserves and refuges of the U.S. Fish and Wildlife Service. Participants in this session will learn the basic requirements for HPP use and the multiple ways the HPP has been applied to geographies nationwide. (PDF contains 5 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses the application of Geographic Information System (GIS) to fisheries management. The paper presents the importance of the emerging technology of GIS and how it can be utilized to greatly speed up and make more efficient location optimizing processes and how the technology can allow for a through examination of the many spatially variable factors which might affect or control fish production both from aquaculture and inland fisheries in Nigeria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improvements in methods for the detection and enumeration of microbes in water, particularly the application of techniques of molecular biology, have highlighted shortcomings in the ”standard methods” for assessing water quality. Higher expectations from the consumer and increased publicity associated with pollution incidents can lead to an uncoupling of the cycle which links methodological development with standard-setting and legislation. The new methodology has also highlighted problems within the water cycle, related to the introduction, growth and metabolism of microbes. A greater understanding of the true diversity of the microbial community and the ability to transmit genetic information within aquatic systems ensures that the subject of this symposium and volume provides an ideal forum to discuss the problems encountered by both researcher and practitioner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foraging habitat selection of nesting Great Egrets ( Ardea alba ) and Snowy Egrets ( Egretta thula ) was investigated within an estuary with extensive impounded salt marsh habitat. Using a geographic information system, available habitat was partitioned into concentric bands at five, ten, and 15 km radius from nesting colonies to assess the relative effects of habitat composition and distance on habitat selection. Snowy Egrets were more likely than Great Egrets to depart colonies and travel to foraging sites in groups, but both species usually arrived at sites that were occupied by other wading birds. Mean flight distances were 6.2 km (SE = 0.4, N = 28, range 1.8-10.7 km) for Great Egrets and 4.7 km (SE = 0.48, N = 31, range 0.7-12.5 km) for Snowy Egrets. At the broadest spatial scale both species used impounded (mostly salt marsh) and estuarine edge habitat more than expected based on availability while avoiding unimpounded (mostly fresh water wetland) habitat. At more local scales habitat use matched availability. Interpretation of habitat preference differed with the types of habitat that were included and the maximum distance that habitat was considered available. These results illustrate that caution is needed when interpreting the results of habitat preference studies when individuals are constrained in their choice of habitats, such as for central place foragers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this issue NAGA introduces a new page on profiles of fish species. This page will be a permanent feature of the NAGA and will be based on information derived from FishBase (http://www.fishbase.org), the world’s premier information system on fishes and a global public good. FishBase is being developed by the WorldFish Center and an International Consortium. The first species selected is the North African catfish Clarias gariepinus, one of the most important freshwater fish species in Africa. It has been chosen in honor of Prof Dr Guy Teugels of the Musée Royal de l’Afrique Centrale (MRAC) of Tervuren, Belgium, who recently passed away and who spent many years investigating this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-one deepwater and other shark species of the U.S. Exclusive Economic Zone in the Atlantic Ocean and Gulf of Mexico, which currently are not included in any Federal fishery management plan, are described, with a focus on primary distribution. Many of these shark species are not well known, while others which are more common may be of particular interest. Owing to concerns regarding possible increases in fishing effort for some of these species, as well as possible increases in bycatch rates as other fisheries move farther offshore, it is important that these sharks be considered in marine ecosystem management efforts. This will necessitate a better understanding of their biology and distribution. Primary distribution maps are included, based on geographic information system (GIS) analyses of both published and unpublished data, and a review of the literature. The most recent systematic classification and nomenclature for these species is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is the Wetland resource evaluation and the NRA's role in its conservation: Resource assessment report produced by the National Rivers Authority in 1995. This R&D document provides a strategy for the assessment of the wetland resource of England and Wales. As a first step the report defines wetlands in their UK context. The following working definition is suggested: Wetland is land that has (or had until modified) a water level predominantly at, near, or up to 1.5 m above the ground surface for sufficient time during the year to allow hydrological processes to be a major influence on the soils and biota. These processes may be expressed in certain features, such as characteristic soils and vegetation. The report also summarises a hydrotopographical classification of wetlands. The report then develops a strategy for the establishment of a wetland resource Inventory based on a geographical information system (GIS) as a means of storing and manipulating site data from across England and Wales.