20 resultados para approximate calculation of sums
Resumo:
Salinity, temperature and pressure are parameters which govern the oceanographic state of a marine water body and together they make up density of seawater. In this contribution we will focus our interest on one of these parameters, the salinity: accuracy in relation to different purposes as well as observation technique and instrumentation. We will also discuss the definition of salinity. For example most of the Indian Ocean waters are within the salinity range from 34.60-34.80, which emphasize the importance of careful observations and clear definitions of salinity, in such a way that it is possible to define water masses and predict their movements. In coastal waters the salinity usually features much larger variation in time and space and thus less accuracy is sometimes needed. Salinity has been measured and defined in several ways over the past century. While early measurements were based on the amount of salt in a sea water sample, today the salinity of seawater is most often determined from its conductivity. As conductivity is a function of salinity and temperature, determination involves also measurement of the density of seawater is now more precisely estimated and thus the temperature. As a result of this method the Practical Salinity Scale (PSS) was developed. The best determination of salinity from conductivity and the temperature measurements gives salinity with resolution of 0.001 psu, while the accuracy of titration method was about ± 0.02‰. Because of that, even calculation of movements in the ocean is also improved.
Resumo:
Salinity, temperature and pressure are parameters which govern the oceanographic state of a marine water body and together they make up density of seawater. In this contribution we will focus our interest on one of these parameters, the salinity: accuracy in relation to different purposes as well as observation technique and instrumentation. We will also discuss the definition of salinity. For example most of the Indian Ocean waters are within the salinity range from 34.60-34.80, which emphasize the importance of careful observations and clear definitions of salinity, in such a way that it is possible to define water masses and predict their movements. In coastal waters the salinity usually features much larger variation in time and space and thus less accuracy is sometimes needed. Salinity has been measured and defined in several ways over the past century. While early measurements were based on the amount of salt in a sea water sample, today the salinity of seawater is most often determined from its conductivity. As conductivity is a function of salinity and temperature, determination involves also measurement of the density of seawater is now more precisely estimated and thus the temperature. As a result of this method the Practical Salinity Scale (PSS) was developed. The best determination of salinity from conductivity and the temperature measurements gives salinity with resolution of 0.001 psu, while the accuracy of titration method was about ± 0.02‰. Because of that, even calculation of movements in the ocean is also improved.
Resumo:
Effect of anaesthetization with benzocaine at the rate of 18.0 mg.1super(-1) on juveniles of Channa punctatus was observed using a cylindrical glass respirometer. Oxygen consumption and opercular movement were studied at 3h and 24h of anaesthetization. The oxygen consumption of control fish increased linearly from 0.183±0.029 to 0.481±0.034 mlO sub(2).h super(-1) with an increase in body weight from 1.45±0.18 to 6.12±0.11g and showed a reduction (p<0.001) of about 41% in 3h and 37% in 24h anaesthetization of Benzocaine. Similarly, the opercular movement of control fish ranging between 46±1 to 49±1min super(-1) came down to show a reduction (p<0.001) of 43% and 38% respectively in 3h and 24h anaesthetization. The information is useful in calculation of oxygen requirement of this species for live transportation and other experimental purpose.
Resumo:
The findings are presented of a study conducted to determine a method for the calculation of the yield of dried air bladders of eel from the weight of the whole fish.
Resumo:
In order to carry out Biometric studies, 75 samples were caught from 3 locations ( Tajan river, Sefidrud and Shirud) using Salic and the length (±1 mm) and weights (± 5 gr) of samples were determined. Using One-way ANOVA by SPPSS software, there wasn’t significant difference between locations in length and fecondity (P ≥0.01(, but there was significant difference between Shirud and tajan samples with sefidrud in weight ) P≤0.01(. In order to carry out genetic variation studies, 210 fish were caught from 3 different regions of the Iranian coastline (Khoshkrud, Tonekabon, Gorganrud) and 1 region in Azerbaijan (Waters of the Caspian Sea close to Kura River mouth) during 2008-2009 . Genomic DNA was extracted of fin using the phenol-chloroform. The quantity and quality of DNA from samples were assessed by spectrophptometer and 1% agarose gel electro-phoresis. PCR was carried out using 15 paired microsatellite primers. PCR products were separated on 8% polyacrylamide gels that were stained using silver nitrate. Molecular weight calculate using UVTech software. The recorded microsatellite genotypes were used as input data for the GENALEX software version 6 package in order to calculate allele and genotype frequencies, observed (Ho) and (He) expected heterozygosities and to test for deviations from Hardy-Weinberg equilibrium. Genetic distance between two populations was estimated from Nei standard genetic distance and genetic similarity index (Nei, 1972). Genetic differentiation between populations was also evaluated by the calculation of pairwise estimates of Fst and Rst values. From 15 SSR markers were used in this investigation, 9 of them were polymorph. Average of expected and observed heterozygosity was 0.54 and 0.49 respectively. Significant deviations from Hardy-Weinberg expectations were observed in all of location except Anzali lagoon- autumn in AF277576 and EF144125, Khoshkrud in EF144125 and Gorganrud and Kura in AF277576. Using Fst and Rst there was significant difference between locations ) P≤0.01(. According to Fst , the highest population differentiation (Fst= 0.217) was between Gorganrud and Khoshkrud that have the lowest Nm and the lowest (Fst= 0.086) was between Gorganrud and Tonekabon that have the highest Nm. Using Rst the highest population differentiation (Rst= 0.271) was between Tonekabon and spring Anzali lagoon and the lowest (Rst= 0.026) was between Tonekabon and Autumn Anzali 159 lagoon. Also the difference between Spring Anzali lagoon and Autumn Anzali lagoon was noticeable (Fst=0.15). AMOVA analysis with consideration of 2 sampling regions (Iran and Azerbaijan) and 7 sampling locations (Iran: Khoshkrud, Tonekabon, Gorganrud, Spring Anzali lagoon and Autumn Anzali lagoon ; Azerbaijan: the Kura mouth) revealed that almost all of the variance in data namely 83% )P≤0.01( was within locations, Genetic variances among locations was 14% )P≤0.01( and among regions was 3% )P≤0.01(. The genetic distance was the highest (0.646) between Gorganrud and Autumn Anzali lagoon populations, whereas the lowest distance (0.237) was between Gorganrud and Tonekabon River. Result obtained from the present study show that at least 2 different population of Rutilus frissi kutum are found in the Caspian sea,which are including the kura river population and the southern Caspian sea samples and it appears that there is more than one population in southern Caspian sea that should be attantioned in artifical reproduction Center and stoke rebilding.