17 resultados para Williams, James Hunter, 1926-


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In July 2007, a mandatory Federal observer program was implemented to characterize the U.S. Gulf of Mexico penaeid shrimp (Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus) fishery. In June 2008, the program expanded to include the South Atlantic penaeid and rock shrimp, Sicyonia spp., fisheries. Data collected from 10,206 tows during 5,197 sea days of observations were analyzed by geographical area and target species. The majority of tows (~70%) sampled were off the coasts of Texas and Louisiana. Based on total hours towed, the highest concentrated effort occurred off South Texas and southwestern Florida. Gear information, such as net characteristics, bycatch reduction devices, and turtle excluder devices were fairly consistent among areas and target species. By species categories, finfish comprised the majority (≥57%) of the catch composition in the Gulf of Mexico and South Atlantic penaeid shrimp fisheries, while in the South Atlantic rock shrimp fishery the largest component (41%) was rock shrimp. Bycatch to shrimp ratios were lower than reported in previous studies for the Gulf of Mexico penaeid shrimp fishery. These decreased ratios may be attributed to several factors, notably decreased shrimp effort and higher shrimp catch per unit of effort (CPUE) in recent years. CPUE density surface plots for several species of interest illustrated spatial differences in distribution. Hot Spot Analyses for shrimp (penaeid and rock) and bycatch species identified areas with significant clustering of high or low CPUE values. Spatial and temporal distribution of protected species interactions were documented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal ecosystems and the services they provide are adversely affected by a wide variety of human activities. In particular, seagrass meadows are negatively affected by impacts accruing from the billion or more people who live within 50 km of them. Seagrass meadows provide important ecosystem services, including an estimated $1.9 trillion per year in the form of nutrient cycling; an order of magnitude enhancement of coral reef fish productivity; a habitat for thousands of fish, bird, and invertebrate species; and a major food source for endangered dugong, manatee, and green turtle. Although individual impacts from coastal development, degraded water quality, and climate change have been documented, there has been no quantitative global assessment of seagrass loss until now. Our comprehensive global assessment of 215 studies found that seagrasses have been disappearing at a rate of 110 square kilometers per year since 1980 and that 29% of the known areal extent has disappeared since seagrass areas were initially recorded in 1879. Furthermore, rates of decline have accelerated from a median of 0.9% per year before 1940 to 7% per year since 1990. Seagrass loss rates are comparable to those reported for mangroves, coral reefs, and tropical rainforests and place seagrass meadows among the most threatened ecosystems on earth.