17 resultados para Water treatment plants.
Resumo:
Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.
Resumo:
Hardness of water had significant effect on the acute toxicity of cadmium to common carp, Cyprinus carpio. The 96h LC sub(50) and safe application rate increased from 43.17 and 22.77 mg 1 super(-1) in soft water (0.9 mM Ca super(2+) l super(-1)) to 310.48 and 177.66 mg l super(-1), respectively, in very hard water (6.0 mM Ca super(2+) l super(-1)). In medium hard and hard water, 96h LC sub(50) values were 48.39 and 116.45 mg l super(-1). When sediments were included in the medium hard, hard and very hard water treatments, the 96h LC sub(50) were 111.20, 133.71 and 334.47 mg l super(-1), respectively. Among these values, the one for medium hard water with sediment treatment was significantly higher than medium hard water treatment; values for the other two treatments were non-significant when compared with respective water treatments. Sediment was able to reduce the acute toxicity of cadmium mainly due to the complexation of cadmium with dissolved organic carbon (DOC). At the lower hardness level, cadmium complexed with DOC and the acute toxicity was reduced significantly. At higher hardness, most of the DOC sites were occupied by calcium and the acute toxicity of cadmium was not significantly reduced in hard water with sediment and very hard water with sediment experiments in comparison to respective water treatments.