57 resultados para University satellite
Resumo:
The depth, alkalinity, total dissolved solids and conductivity of Kubanni Reservoir were monitored biweekly between December 2003 and April 2004. The range values and their means were 0.8-4.64m, 42-67mg/l, 52-71mg/l and 104-142 mhos/cm; 2.8m, 42.6mg/l, 59.8mg/l and 119.6 mhos/cm respectively. Total Dissolved solids correlated significantly (P<0.05) with depth and conductivity while alkalinity correlated highly and significantly(P<0.05) with conductivity, total dissolved solids but negatively correlated with depth. The electrical conductivity was positively and highly correlated with depth while Morpho-Edaphic Index (MEI) which increased with depth decrease correlated positively with conductivity. Based on the average value of the MEI the potential fish catch of the reservoir was estimated to be 38kg/ha. This estimate was compared with other values obtained from other African reservoirs/lakes and management considerations under "private liability company" are proffered
Resumo:
Details are given of the Institute and its activities, in particular the research projects being undertaken. These include studies on the marine molluscs of Sierra Leone, the cockle fishery, a preliminary investigation on the fouling organisms affecting the raft-cultured oyster populations, larval oyster ecology in relation to oyster culture, preliminary studies on the reproductive cycle of the mangrove oyster (Crassostrea tulipa), and catch composition of fishes taken by beach-seines at Lumley (Freetown). Records of the west African manatee (Trichechus senegalensis) are noted.
Resumo:
Histochemical experiments are conducted in order to study the interrenal cells of European brook lamprey (Lampetra planeri).
Resumo:
While college students use a wide array of technologies to access information, their skills at determining what is relevant, in a university setting and in life, are poor. Many of these skills have to be taught in college courses. Instruction must be performed by a collaborative team using technologies that effectively reach students. This team must be ready to go into the classroom when needed and be able to address the problem whenever the student needs assistance. The results will be better writing and better research skills that will not only benefit the faculty but will lead to lifelong learning.
Resumo:
The Gainesville Florida Reef, a satellite of the Worldwide Hyperbolic Crochet Coral Reef, project not only shows the beauty of reefs but serves to: • Foster scientific communication through the visual arts • Raise awareness of the fragility of our coral reefs and the entire ecosystem • Support learning by creating physical models of geometric principles • Connect several areas on campus, including fine arts, mathematics and ecology and environmental sciences through collaboration and mutual interest • Encourage local community and alumni involvement through creating, observing and learning
Resumo:
Pop-up satellite archival tags (PSATs) have been used to study movements, habitat use, and postrelease survival of large pelagic vertebrates, but the size of these tags has historically precluded their use on smaller coastal species. To evaluate a new generation of smaller PSATs for the study of postrelease survival and habitat use of coastal species, we attached Microwave Telemetry, Inc., X-tags to ten striped bass (Morone saxatilis) 94–112 cm total length (TL) caught on J hooks and circle hooks during the winter recreational fishery in Virginia. Tags collected temperature and depth information every five minutes and detached from the fish after 30 days. Nine of the ten tags released on schedule and eight transmitted 30% to 96% (mean 78.6%) of the archived data. Three tags were physically recovered during or after the transmission period, allowing retrieval of all archived data. All eight striped bass whose tags transmitted data survived for 30 days after release, including two fish that were hooked deeply with J hooks. The eight fish spent more than 90% of their time at depths less than 10 m and in temperatures of 6–9°C, demonstrated no significant diel differences in depth or temperature utilization (P>0.05), and exhibited weak periodicities in vertical movements consistent with daily and tidal cycles.
Resumo:
The recent development of the pop-up satellite archival tag (PSAT) has allowed the collection of information on a tagged animal, such as geolocation, pressure (depth), and ambient water temperature. The success of early studies, where PSATs were used on pelagic fishes, has spurred increasing interest in the use of these tags on a large variety of species and age groups. However, some species and age groups may not be suitable candidates for carrying a PSAT because of the relatively large size of the tag and the consequent energy cost to the study animal. We examined potential energetic costs to carrying a tag for the cownose ray (Rhinoptera bonasus). Two forces act on an animal tagged with a PSAT: lift from the PSATs buoyancy and drag as the tag is moved through the water column. In a freshwater flume, a spring scale measured the total force exerted by a PSAT at flume velocities from 0.00 to 0.60 m/s. By measuring the angle of deflection of the PSAT at each velocity, we separated total force into its constituent forces — lift and drag. The power required to carry a PSAT horizontally through the water was then calculated from the drag force and velocity. Using published metabolic rates, we calculated the power for a ray of a given size to swim at a specified velocity (i.e., its swimming power). For each velocity, the power required to carry a PSAT was compared to the swimming power expressed as a percentage, %TAX (Tag Altered eXertion). A %TAX greater than 5% was felt to be energetically significant. Our analysis indicated that a ray larger than 14.8 kg can carry a PSAT without exceeding this criterion. This method of estimating swimming power can be applied to other species and would allow a researcher to decide the suitability of a given study animal for tagging with a PSAT.
Resumo:
Short-duration (5- or 10-day) deployments of pop-up satellite archival tags were used to estimate survival of white marlin (Tetrapturus albidus) released from the western North Atlantic recreational fishery. Forty-one tags, each recording temperature, pressure, and light level readings approximately every two minutes for 5-day tags (n= 5) or four minutes for 10-day tags (n= 36), were attached to white marlin caught with dead baits rigged on straight-shank (“J”) hooks (n =21) or circle hooks (n=20) in offshore waters of the U.S. Mid-Atlantic region, the Dominican Republic, Mexico, and Venezuela. Forty tags (97.8%) transmitted data to the satellites of the Argos system, and 33 tags (82.5%) transmitted data consistent with survival of tagged animals over the deployment duration. Approximately 61% (range: 19−95%) of all archived data were successfully recovered from each tag. Survival was significantly (P<0.01) higher for white marlin caught on circle hooks (100%) than for those caught on straight-shank (“J”) hooks (65%). Time-to-death ranged from 10 minutes to 64 hours following release for the seven documented mortalities, and five animals died within the first six hours after release. These results indicate that a simple change in hook type can significantly increase the survival of white marlin released from recreational fis
Resumo:
John Nathan Cobb (1868–1930) became the founding Director of the College of Fisheries, University of Washington, Seattle, in 1919 without the benefit of a college education. An inquisitive and ambitious man, he began his career in the newspaper business and was introduced to commercial fisheries when he joined the U.S. Fish Commission (USFC) in 1895 as a clerk, and he was soon promoted to a “Field Agent” in the Division of Statistics, Washington, D.C. During the next 17 years, Cobb surveyed commercial fisheries from Maine to Florida, Hawaii, the Pacific Northwest, and Alaska for the USFC and its successor, the U.S. Bureau of Fisheries. In 1913, he became editor of the prominent west coast trade magazine, Pacific Fisherman, of Seattle, Wash., where he became known as a leading expert on the fisheries of the Pacific Northwest. He soon joined the campaign, led by his employer, to establish the nation’s first fisheries school at the University of Washington. After a brief interlude (1917–1918) with the Alaska Packers Association in San Francisco, Calif., he was chosen as the School’s founding director in 1919. Reflecting his experience and mindset, as well as the University’s apparent initial desire, Cobb established the College of Fisheries primarily as a training ground for those interested in applied aspects of the commercial fishing industry. Cobb attracted sufficient students, was a vigorous spokesman for the College, and had ambitions plans for expansion of the school’s faculty and facilities. He became aware that the College was not held in high esteem by his faculty colleagues or by the University administration because of the school’s failure to emphasize scholastic achievement, and he attempted to correct this deficiency. Cobb became ill with heart problems in 1929 and died on 13 January 1930. The University soon thereafter dissolved the College and dismissed all but one of its faculty. A Department of Fisheries, in the College of Science, was then established in 1930 and was led by William Francis Thompson (1888–1965), who emphasized basic science and fishery biology. The latter format continues to the present in the Department’s successor, The School of Aquatic Fisheries and Science.
Resumo:
Attempts to capture and place satellite tags on belugas, Delphinapterus leucas, in Cook Inlet, Alaska were conducted during late spring and summer of 1995, 1997, and 1999. In 1995, capture attempts using a hoop net proved impractical in Cook Inlet. In 1997, capture efforts focused on driving belugas into nets. Although this method had been successful in the Canadian High Arctic, it failed in Cook Inlet due to the ability of the whales to detect and avoid nets in shallow and very turbid water. In 1999, belugas were successfully captured using a gillnet encirclement technique. A satellite tag was attached to a juvenile male, which subsequently provided the first documentation of this species’ movements within Cook Inlet during the summer months (31 May–17 September).
Resumo:
The distribution and intensity of a bloom of the toxic cyanobacterium, Microcystis aeruginosa, in western Lake Erie was characterized using a combination of satellite ocean-color imagery, field data, and meteorological observations. The bloom was first identified by satellite on 14 August 2008 and persisted for more than 2 months. The distribution and intensity of the bloom was estimated using a satellite algorithm that is sensitive to near-surface concentrations of M. aeruginosa. Increases in both area and intensity were most pronounced for wind stress less than 0.05 Pa. Area increased while intensity did not change for wind stresses of 0.05–0.1 Pa, and both decreased for wind stress greater than 0.1 Pa. The recovery in intensity at the surface after strong wind events indicated that high wind stress mixed the bloom through the water column and that it returned to the surface once mixing stopped. This interaction is consistent with the understanding of the buoyancy of these blooms. Cloud cover (reduced light) may have a weak influence on intensity during calm conditions. While water temperature remained greater than 15°C, the bloom intensified if there were calm conditions. For water temperature less than 15°C, the bloom subsided under similar conditions. As a result, wind stress needs to be considered when interpreting satellite imagery of these blooms.
Resumo:
This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW.
Resumo:
Novel data on the spatial and temporal distribution of fishing effort and population abundance are presented for the market squid fishery (Loligo opalescens) in the Southern California Bight, 1992−2000. Fishing effort was measured by the detection of boat lights by the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Visual confirmation of fishing vessels by nocturnal aerial surveys indicated that lights detected by satellites are reliable indicators of fishing effort. Overall, fishing activity was concentrated off the following Channel Islands: Santa Rosa, Santa Cruz, Anacapa, and Santa Catalina. Fishing activity occurred at depths of 100 m or less. Landings, effort, and squid abundance (measured as landings per unit of effort, LPUE) markedly declined during the 1997−98 El Niño; landings and LPUE increased afterwards. Within a fishing season, the location of fishing activity shifted from the northern shores of Santa Rosa and Santa Cruz Islands in October, the typical starting date for squid fishing in the Bight, to the southern shores by March, the typical end of the squid season. Light detection by satellites offers a source of fine-scale spatial and temporal data on fishing effort for the market squid fishery off California, and these data can be integrated with environmental data and fishing logbook data in the development of a management plan.
Resumo:
Over the past few years, pop-up satellite archival tags (PSATs) have been used to investigate the behavior, movements, thermal biology, and postrelease mortality of a wide range of large, highly migratory species including bluefin tuna (Block et al., 2001), swordfish (Sedberry and Loefer, 2001), blue marlin (Graves et al., 2002), striped marlin (Domeier and Dewar, 2003), and white sharks (Boustany et al., 2002). PSAT tag technology has improved rapidly, and current tag models are capable of collecting, processing, and storing large amounts of information on light level, temperature, and pressure (depth) for a predetermined length of time before the release of these tags from animals. After release, the tags float to the surface, and transmit the stored data to passing satellites of the Argos system.