36 resultados para UP-CONVERSION
Resumo:
Three men electrofishing in an unknown a dry stream in North West England, UK, in the 50's. This photo is part of a Photo Album that includes pictures from 1935 to 1954.
Resumo:
Over the past few years, pop-up satellite archival tags (PSATs) have been used to investigate the behavior, movements, thermal biology, and postrelease mortality of a wide range of large, highly migratory species including bluefin tuna (Block et al., 2001), swordfish (Sedberry and Loefer, 2001), blue marlin (Graves et al., 2002), striped marlin (Domeier and Dewar, 2003), and white sharks (Boustany et al., 2002). PSAT tag technology has improved rapidly, and current tag models are capable of collecting, processing, and storing large amounts of information on light level, temperature, and pressure (depth) for a predetermined length of time before the release of these tags from animals. After release, the tags float to the surface, and transmit the stored data to passing satellites of the Argos system.
Resumo:
Fishery potential of the nearshore waters of Bombay is estimated from the observed values of biological productivity at different trophic levels. The rate of primary and secondary production is relatively higher in the polluted coastal waters of Versova, Mahim and Thana. Observed mean benthic standing stock in the polluted creek waters is far less than the relatively unpolluted coastal regions off Bombay. Results suggest that the higher productivity at the lower trophic levels due to pollution, may not end up with high tertiary production. Therefore, such polluted regions are to be classified as special ecosystems where the transfer coefficient may be far less than the assumed 10% conversion factor.
Resumo:
An experiment was conducted for rearing of Meni, Nandus nandus in laboratory condition for seven months with the objective to select appropriate feed for the species and to develop a rearing technique of the species up to the stage of sexual maturation. Different trials were conducted using artificial feed (35.5% protein), dead fresh kachki (Carica soborna), dead fresh prawn (Macrobrachium lamarrei) and live prawn (Macrobrachium lamarrei). The provision of bottom sediment did not significantly influence the growth of fish. Between dead fresh kachki and dead fresh prawn, the fish preferred dead fresh prawn. The fish was found to be reluctant to take dead fresh kachki and prawn as food unless they became very hungry. The fish was found actively feeding on live prawn. The FCR of the prawn as food for N. nandus was found to be 2.5. From the study, it was observed that in laboratory rearing N. nandus preferred live prawn as food than artificial feed, dead fresh kachki and dead fresh prawn. The fish fed on live prawn became sexually matured (eggs or white milt extruded by gentle pressure on the abdomen of the fish) in the laboratory at the end of the experiment.
Resumo:
A nutritional study was carried out to know the feasibility of formulated and commercial feeds on the growth of juveniles of the freshwater prawn Macrobrachium malcolmsonii. Best relative growth rate was observed for feed 1 followed by feeds 2 and 3. Animals fed with feed 1 showed higher production than the other feeds. Higher assimilation efficiency was noticed in the animals provided with feeds 5 and 4. Higher gross and net growth efficiencies were observed in the animals offered feed 1. Among the commercial feeds, feed 3 may considered to be suitable alternative to feed 1.
Resumo:
A 30-day experiment was conducted to determine the effects of varying feeding rates on the growth of fry of silver dollar, Metynnis schreitmulleri (Ahl). Silver dollar fry with an average initial body weight of 1.100 ± 0.029 g were collected from a local fish breeder and fed a diet (35% protein and 6% fat) at the rate of 3, 6 and 9% of body weight per day in two equal meals. Per cent weight gain increased from 54.54 to 118.18 with increased feeding rates, which were significantly different (p<0.05) from each other. The highest specific growth rate was obtained in the fry fed at 9% body weight per day. In another study for 30 days, the effects of feeding frequency on growth, feed conversion and protein efficiency of silver dollar fry were evaluated. Groups of silver dollar fry with an initial individual weight of 0.700 ± 0.019 g were offered feed continuously for 24 hours during the day or night at different time intervals with varying meal sizes. The night time feeding with two meals gave the lowest weight and length gains (0.985 g and 0.30 cm). The growth rates of fish fed during day with three equal-sized meals are significantly (p<0.05) higher (4.66%) than the other treatments.
Resumo:
The evolutionary process of converting low-lying paddy fields into fish farms and its impact on agrarian communities in some selected areas of Mymensingh district were studied. This study was conducted through participatory rural appraisal (PRA) covering 12 villages from each of selected upazillas viz. Fulpur and Haluaghat of Mymensing [sic] district. A total of 12 PRA sessions were conducted where 90 farmers participated during 29 July to 26 August 2004. It is seen that the use of low-lying paddy fields was mostly confined to Broadcast Aman (B. Aman) rice production until 1960s. With the introduction of modern rice farming technology, the farmers started to produce Boro rice in Rabi season and B. Aman rice in Kharif season. With the passage of time, aquaculture technologies have been evolved and the farmers realized that fish farming is more profitable than rice cultivation, and then they started to utilize their paddy fields for alternate rice-fish farming and rice-cum-fish farming. Now a days, aquaculture based crop production system is in practice in more than 25% of the low-lying paddy fields. Conversion of rice fields in to fish ponds has brought up a change in the livelihood patterns of the rural farmers. The areas where the farmers involved themselves in the new production systems were fingerling collection, transportation and marketing of fry and fingerlings. During 1960s to 1970s, a few people used to culture fish in the permanent ponds for their own consumption, the species produced were rohu, catla, mrigal, ghainna, long whiskered catfish, freshwater shark (boal), snake head (shol) etc. Small fishes like climbing perch, stinging catfish, walking catfish, barb, minnows etc. were available in the rice fields during monsoon season. In 1980s to mid 1990s, some rice fields were converted into fish ponds and the people started to produce fish for commercial purposes. When rice-fish farming became profitable, a large number of people started converting their rice fields in to rice-fish culture ponds. Culture of some exotic fishes like silver carp, tilapia, grass carp, silver barb etc. also started in the paddy fields. Higher income from fish farming contributed positively in improving the housing, sanitation and education system in the study areas. It is seen that the medium and medium high lands were only used for alternate rice fish farming. The net income was high in any fish based cropping system that motivated the farmers to introduce fish based cropping system in the low-lying inland areas. As a result, the regional as well as communal income disparities occurred. However, the extraction of ground water became common during the dry period as the water was used for both rice and fish farming. Mass conversion of paddy fields into rice-fish culture ponds caused water logging in the study areas. In most cases, the participated farmers mentioned that they could be easily benefited by producing fish with T. Aman or only fish during the monsoon season. They agreed that this was an impressive technology to them and they could generate employment opportunities throughout the year. Finally, the social, economic and technical problems which are acting as constraints to rapid expansion of fish production system were reported from the interviewee.
Resumo:
process is described for the preparation of chitosan from prawn waste. The process involves extraction of protein using 0.5% sodium hydroxide solution, bleaching the protein free mass with bleach liquor containing 0.3-0.5% available chlorine followed by demineralisation with 1.25 N hydrochloric acid in the cold and deacetylation using 1:1 (w/w) sodium hydroxide solution at 100°C for 2 hours.