19 resultados para Tower of Winds
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Past work has shown that surface zonal equatorial wind stress, zonally integrated from one side of the Pacific to the other, is the key variable for estimating long-term El Niño behavior in the eastern Pacific. ... We used detrended COADS pressure in the eastern and western equatorial Pacific and post-1960 detrended Florida State University equatorial wind stress zonally averaged across the Pacific to verify this relationship.
Resumo:
The Arabian Sea is unique due to the extremes in atmospheric forcing that lead to the semi-annual seasonal changes. The reversing winds of summer and winter monsoon induce the variation in the characteristics of mixed layer depth. The importance of mixed layer depth is recognized in studying the biological productivity in the ocean. In this paper variability of mixed layer depth in the north Arabian Sea have been discussed. The study is based on the data collected under North Arabian Sea Environment and Ecosystem Research (NASEER) program. The results of the study indicate that there is a significant variation in the mixed layer depth from summer to winter monsoon as well as coast to offshore.
Resumo:
For a period of one year beginning December 1977, drift card experiments were conducted off the western and southern coasts of Panay Island to determine the surface currents in the area. Of a total 2,384 drift cards released during the study, 382 (16.02%) were recovered, 92% of them within 30 days following dispatch. The surface currents in the study area are strongly influenced, in direction and speed, by the prevailing monsoon winds. During the NE monsoon period, the surface currents move away from the coast; during the SW monsoon, toward and/or parallel to the coast. Based on the results, the probable movement and transport of milkfish (Chanos chanos) eggs and larvae from the spawning ground to the fry collection ground are also discussed.
Resumo:
The article presents the impact of mangrove conversion on fisheries and on coastal areas. The mangrove areas which serve as nursery grounds for important species of fish and crustaceans are also rich feeding ground for many species from various trophic levels. Thus, the destruction of mangroves could affect the availability of fry and broodstock and, consequently, aquaculture production and fisheries. While in coastal areas, the destruction of mangroves increased the risk of coastal erosion from storm surges and winds, accelerates the erosion of riverbanks, exposes acid sulfate soils, leading to poor production and mass mortality of stocks, and affects the freshwater supply through salt intrusion upstream among others.