31 resultados para Test act, 1673.
Resumo:
Bycatch can harm marine ecosystems, reduce biodiversity, lead to injury or mortality of protected species, and have severe economic implications for fisheries. On 12 January 2007, President George W. Bush signed the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006 (MSRA). The MSRA required the U.S. Secretary of Commerce (Secretary) to establish a Bycatch Reduction Engineering Program (BREP) to develop technological devices and other conservation engineering changes designed to minimize bycatch, seabird interactions, bycatch mortality, and post-release mortality in Federally managed fisheries. The MSRA also required the Secretary to identify nations whose vessels are engaged in the bycatch of protected living marine resources (PLMR’s) under specified circumstances and to certify that these nations have 1) adopted regulatory programs for PLMR’s that are comparable to U.S. programs, taking into account different conditions, and 2) established management plans for PLMR’s that assist in the collection of data to support assessments and conservation of these resources. If a nation fails to take sufficient corrective action and does not receive a positive certification, fishing products from that country may be subject to import prohibitions into the United States. The BREP has made significant progress to develop technological devices and other conservation engineering designed to minimize bycatch, including improvements to bycatch reduction devices and turtle excluder devices in Atlantic and Gulf of Mexico trawl fisheries, gillnets in Northeast fisheries, and trawls in Alaska and Pacific Northwest fisheries. In addition, the international provisions of the MSRA have provided an innovative tool through which the United States can address bycatch by foreign nations. However, the inability of the National Marine Fisheries Service to identify nations whose vessels are engaged in the bycatch of PLMR’s to date will require the development of additional approaches to meet this mandate.
Resumo:
Colonies of the scleractinian coral Acropora palmata, listed as threatened under the US Endangered Species Act in 2006, have been monitored in Hawksnest Bay, within Virgin Islands National Park, St. John, from 2004 through 2010 by scientists with the US Geological Survey, National Park Service, and the University of the Virgin Islands. The focus has been on documenting the prevalence of disease, including white band, white pox (also called patchy necrosis and white patches), and unidentified diseases (Rogers et al., 2008; Muller et al., 2008). In an effort to learn more about the pathologies that might be involved with the diseases that were observed, samples were collected from apparently healthy and diseased colonies in July 2009 for analysis. Two different microbial assays were performed on Epicentre Biotechnologies DNA swabs containing A. palmata coral mucus, and on water and sediment samples collected in Hawksnest Bay. Both assays are based on polymerase chain reaction (PCR) amplification of portions of the small rRNA gene (16S). The objectives were to determine 1) if known coral bacterial pathogens Serratia marcescens (Acroporid Serratiosis), Vibrio coralliilyticus (temperature-dependent bleaching, White Syndrome), Vibrio shiloi (bleaching, necrosis), and Aurantimonas coralicida (White Plague Type II) were present in any samples, and 2) if there were any differences in microbial community profiles of each healthy, unaffected or diseased coral mucus swab. In addition to coral mucus, water and sediment samples were included to show ambient microbial populations. In the first test, PCR was used to separately amplify the unique and diagnostic region of the 16S rRNA gene for each of the coral pathogens being screened. Each pathogen test was designed so that an amplified DNA fragment could be seen only if the specific pathogen was present in a sample. A positive result was indicated by bands of DNA of the appropriate size on an agarose gel, which separates DNA fragments based on the size of the molecule. DNA from pure cultures of each of the pathogens was used as a positive control for each assay.
Resumo:
The parameters a and b of the length-weight relationship of Sepia pharaonis of the form of W=a.L was determined. Sex separated size fequency data collected from Karachi fish Harbour was analysed the length-weight equations, separable by male, female and sex combined. The apparent difference in paired values of exponents b1, b2 for any combination i.e. male versus female and male, female versus sex combined was tested for their significant difference. No significant difference was observed for any combination, this indicated no sex specific variation in length-weigh relationship of Sepia pharaonis.
Resumo:
Latex beads were sensitized with monoclonal antibodies (MAb) rose against VP28 of WSSV. The optimum concentration of MAb required to sensitize the latex beads was 125 µg/ml. The sensitized latex beads were used to detect WSSV from PCR-positive stomach tissue homogenates obtained from infected shrimp. Stomach tissue homogenates from WSSV-infected shrimp agglutinated the sensitized latex beads within 10 minutes, while uninfected samples did not produce any agglutination, although non-specific agglutinations were observed in some samples. The analytical sensitivity, analytical specificity, diagnostic sensitivity and diagnostic specificity of the (LAT) agglutination test were assessed. The analytical sensitivity of the test was 40 ng of purified WSSV (2 µg/ml). The sensitized latex beads did not agglutinate with normal shrimp tissue or MBV-infected tissue homogenate. The test has a diagnostic sensitivity of 70 and 45%, respectively, compared to single-step and nested PCR. The diagnostic specificity of the test was 82%. This test is a simple and rapid on-farm test which can be used to corroborate clinical signs for the detection of WSSV in grow-out ponds.
Resumo:
It is observed that the freezing and thawing of fish leads to increase in the total activity of aspartate aminotransferase (AAT) in tissue fluid due to the release of the bound form of mitochondrial enzyme. Electrophoresis of the tissue fluid of fresh unfrozen fish shows only a single fast-moving band of AAT in the anodic region whereas frozen and thawed fish shows an additional slow-moving band corresponding to mitochondrial AAT in the cathodic region. The method can be adopted to distinguish fresh fish from frozen and thawed fish.
Resumo:
The research was conducted to determine the toxicity of extracts from five Philippine species of marine sponges on tilapia Oreochromis niloticus fry. It was found out that the most potent was the methanol extract of Dysidea herbacea, it kills with the least toxin and at the shortest time.