57 resultados para Terror (Ship)
Resumo:
A high attention has been paid for constant research on the preservation of materials in the marine environment. This includes all phases of design, development, applied engineering and economics which may influence the construction and operation of ships and underwater installations.
Resumo:
International symposium on North Pacific transitional areas [pp. 1-4] [pdf, 0.8 Mb] PICES Volunteer Observing Ship (VOS) Workshop [pp. 5-7] [pdf, 0.3 Mb] Joint meeting on Causes of marine mortality of salmon [pp. 8-9] [pdf, 0.3 Mb] The state of the western North Pacific in the second half of 2001 [pp. 10-11] [pdf, 0.5 Mb] State of the eastern North Pacific in spring 2002 [pp. 12-13] [pdf. 0.4 Mb] The status of the Bering Sea in the second half of 2001 [pp. 14-15] [pdf. 0.3 Mb] PICES Workshop on “Perturbation analysis” on subarctic Pacific gyre ecosystem models [pp. 16-17] [pdf. 0.4 Mb] Status and future plans for SOLAS-Japan [pp. 18-20] [pdf. 0.5 Mb] China-Korea Joint Ocean Research Center: A bridge across the Yellow Sea to connect Chinese and Korean oceanographic institutes and scientists [pp. 21-22] [pdf. 0.3 Mb] Persistent changes in the California Current ecosystem [pp. 23-24] [pdf. 0.2 Mb] The Hokusei Maru: 53 years of research in the Pacific [pp. 25-28] [pdf. 0.5 Mb] First meeting of the CLIVAR Pacific Panel [pp. 29-30] [pdf. 0.3 Mb] Call for contributions to the North Pacific Ecosystem Status Report [p. 31] [pdf. 0.2 Mb] PICES announcements [p. 32] [pdf. 0.2 Mb]
Effects of shear on eggs and larvae of striped bass, morone saxatilis, and white perch, M. americana
Resumo:
Shear stress, generated by water movement, can kill fish eggs and larvae by causing rotation or deformation. Through the use of an experimental apparatus, a series of shear (as dynes/cm2)-mortality equations for fixed time exposures were generated for striped bass and white perch eggs and larvae. Exposure of striped bass eggs to a shear level of 350 dynes/cm2 kills 36% of the eggs in 1 min; 69% in 2 min, and 88% in 4 min; exposure of larvae to 350 dynes/cm2 kills 9.3% in 1 min, 30.0% in 2 min, and 68.1% in 4 min. A shear level of 350 dynes/cm2 kills 38% of the white perch eggs in 1 min, 41% in 2 min, 89% in 5 min, 96% in 10 min, and 98% in 20 min. A shear level of 350 dynes/cm2 applied to white perch larvae destroys 38% of the larvae in 1 min, 52% in 2 min, and 75% in 4 min. Results are experimentally used in conjunction with the determination of shear levels in the Chesapeake and Delaware Canal and ship movement for the estimation of fish egg and larval mortalities in the field.
Resumo:
Executive Summary: The Connectivity Colloquium evolved from an exhortation by Dan Basta, Director of the National Marine Sanctuary Program, to come together and assess what we know about the condition of our natural resources, identify information gaps and how to fill them, and transform science and management from an emphasis on documentation to a nexus for action. This purpose in some ways reflects the initiation of the Florida Keys National Marine Sanctuary itself, which was designated by an act of the U.S. Congress in 1990 in the aftermath of the 1989 Exxon Valdez oil spill in Alaska and three major ship groundings of the Florida Reef Tract in late 1989. Over the next seven years NOAA worked with federal, state, and local partners to develop a comprehensive management plan for the Sanctuary implemented under a co-trustee partnership between NOAA and the State of Florida. (PDF contains 270 pages; 14Mb)
Resumo:
Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and CTD data. Surface current velocity, divergence, and upwelling velocity were derived from ship drift reports. Surface wind velocity, wind stress, wind divergence, wind stress curl, and Ekman pumping velocity were derived from gridded pseudostress data obtained from Florida State University. Seasonal maps of these variables, and their deviations from the annual mean, show different patterns of variation in Equatorial (S°S-SON) and Tropical Surface Water (SOlS0N). Seasonal shifts in the trade winds, which affect the strength of equatorial upwelling and the North Equatorial Countercurrent, cause seasonal variations in most variables. Seasonal and interannual variability of surface temperature, mixed layer depth, thermocline depth and wind stress were quantified. Surface temperature, mixed layer depth and thermocline depth, but not local wind stress, are less variable in Tropical Surface Water than in Equatorial Surface Water. Seasonal and interannual variability are close to equal in most of the ETP, within factors of 2 or less. (PDF file contains 70 pages.)
Resumo:
This study aims to reconstruct the history of shore whaling in the southeastern United States, emphasizing statistics on the catch of right whales, Eubalaena glacialis, the preferred targets. The earliest record of whaling in North Carolina is of a proposed voyage from New York in 1667. Early settlers on the Outer Banks utilized whale strandings by trying out the blubber of carcasses that came ashore, and some whale oil was exported from the 1660s onward. New England whalemen whaled along the North Carolina coast during the 1720s, and possibly earlier. As some of the whalemen from the northern colonies moved to Nortb Carolina, a shore-based whale fishery developed. This activity apparently continued without interruption until the War of Independence in 1776, and continued or was reestablished after the war. The methods and techniques of the North Carolina shore whalers changed slowly: as late as the 1890s they used a drogue at the end of the harpoon line and refrained from staying fast to the harpooned whale, they seldom employed harpoon guns, and then only during the waning years of the fishery. The whaling season extended from late December to May, most successfully between February and May. Whalers believed they were intercepting whales migrating north along the coast. Although some whaling occurred as far north as Cape Hatteras, it centered on the outer coasts of Core, Shackleford, and Bogue banks, particularly near Cape Lookout. The capture of whales other than right whales was a rare event. The number of boat crews probably remained fairly stable during much of the 19th century, with some increase in effort in the late 1870s and early 1880s when numbers of boat crews reached 12 to 18. Then by the late 1880s and 1890s only about 6 crews were active. North Carolina whaling had become desultory by the early 1900s, and ended completely in 1917. Judging by export and tax records, some ocean-going vessels made good catches off this coast in about 1715-30, including an estimated 13 whales in 1719, 15 in one year during the early 1720s, 5-6 in a three-year period of the mid to late 1720s, 8 by one ship's crew in 1727, 17 by one group of whalers in 1728-29, and 8-9 by two boats working from Ocracoke prior to 1730. It is impossible to know how representative these fragmentary records are for the period as a whole. The Carolina coast declined in importance as a cruising ground for pelagic whalers by the 1740s or 1750s. Thereafter, shore whaling probably accounted for most of the (poorly documented) catch. Lifetime catches by individual whalemen on Shackleford Banks suggest that the average annual catch was at least one to two whales during 1830·80, perhaps about four during the late 1870s and early 1880s, and declining to about one by the late 1880s. Data are insufficient to estimate the hunting loss rate in the Outer Banks whale fishery. North Carolina is the only state south of New Jersey known to have had a long and well established shore whaling industry. Some whaling took place in Chesapeake Bay and along the coast of Virginia during the late 17th and early 18th centuries, but it is poorly documented. Most of the rigbt whales taken off South Carolina, Georgia, and northern Florida during the 19th century were killed by pelagic whalers. Florida is the only southeastern state with evidence of an aboriginal (pre-contact) whale fishery. Right whale calves may have been among the aboriginal whalers' principal targets. (PDF file contains 34 pages.)
Resumo:
The Cape Canaveral, Florida, marine ecosystem is unique. There are complex current and temperature regimes that form a faunal transition zone between Atlantic tropical and subtropical waters. This zone is rich faunistically and supports large commercial fISheries for fish, scallops, and shrimp. Canaveral is also unique because it has large numbers of sea turtles year-round, this turtle aggregation exhibiting patterned seasonal changes in numbers, size frequency, and sex ratio. Additionally, a significant portion of this turtle aggregation hibernates in the Canaveral ship channel, a phenomenon rare in marine turtle populations. The Cape Canaveral area has the largest year-round concentration of sea turtles in the United States. However, the ship channel is periodically dredged by the U.S. Army Corps of Engineers in order to keep Port Canaveral open to U.S. Navy vessels, and preliminary surveys showed that many sea turtles were incidentally killed during dredging operations. In order for the Corps of Engineers to fulfill its defense dredging responsibilities, and comply with the Endangered Species Act of 1973, an interagency Sea Turtle Task Force was formed to investigate methods of reducing turtle mortalities. This Task Force promptly implemented a sea turtle research plan to determine seasonal abundance, movement patterns, sex ratios, size frequencies, and other biological parameters necessary to help mitigate dredging conflicts in the channel. The Cape Canaveral Sea Turtle Workshop is a cooperative effort to comprehensively present research results of these important studies. I gratefully acknowledge the support of everyone involved in this Workshop, particularly the anonymous team of referees who painstakingly reviewed the manuscripts. The cover illustration was drawn by Jack C. Javech. (PDF file contains 86 pages.)
Resumo:
In 2004, comparative selectivity investigations were made with the now legal BACOMA codend of 110 mm mesh opening and alternative codends made of netting turned 90° of similar mesh openings on both commercial boats and on research vessels. The results show a certain variability of the BACOMA results – depending on ship type and season (L50 varying between 36,8 and 40,6) – and a general equal efficiency of codends made of netting turned 90° of the same mesh opening. Underwater observations and reduced performance of codends of equal circumference in meshes as the joining round at the end of the tapered part of the trawl indicate the need to reduce the relation of the cir-cumferences of codend and extension to 1 to 0.7 to achieve optimum fit and selectivity.
Resumo:
“Wrong trawl, wrong rigging – that’s why research ship cannot find cod” – in a polemic article in the April number of “Fishing News International” British fishermen accuse fishery scientists of using the wrong trawl for their bottom trawl surveys in the North Sea. They wrote the GOV is unsuited to catch cod and therefore the cod stock could be in a much better shape than assessed by the scientists. In this paper the characteristics of a scientific survey trawl and the results of comparison fishing experiments are listed.
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
The use of self-contained, low-maintenance sensor systems installed on commercial vessels is becoming an important monitoring and scientific tool in many regions around the world. These systems integrate data from meteorological and water quality sensors with GPS data into a data stream that is automatically transferred from ship to shore. To begin linking some of this developing expertise, the Alliance for Coastal Technologies (ACT) and the European Coastal and Ocean Observing Technology (ECOOT) organized a workshop on this topic in Southampton, United Kingdom, October 10-12, 2006. The participants included technology users, technology developers, and shipping representatives. They collaborated to identify sensors currently employed on integrated systems, users of this data, limitations associated with these systems, and ways to overcome these limitations. The group also identified additional technologies that could be employed on future systems and examined whether standard architectures and data protocols for integrated systems should be established. Participants at the workshop defined 17 different parameters currently being measured by integrated systems. They identified that diverse user groups utilize information from these systems from resource management agencies, such as the Environmental Protection Agency (EPA), to local tourism groups and educational organizations. Among the limitations identified were instrument compatibility and interoperability, data quality control and quality assurance, and sensor calibration andlor maintenance frequency. Standardization of these integrated systems was viewed to be both advantageous and disadvantageous; while participants believed that standardization could be beneficial on many levels, they also felt that users may be hesitant to purchase a suite of instruments from a single manufacturer; and that a "plug and play" system including sensors from multiple manufactures may be difficult to achieve. A priority recommendation and conclusion for the general integrated sensor system community was to provide vessel operators with real-time access to relevant data (e.g., ambient temperature and salinity to increase efficiency of water treatment systems and meteorological data for increased vessel safety and operating efficiency) for broader system value. Simplified data displays are also required for education and public outreach/awareness. Other key recommendations were to encourage the use of integrated sensor packages within observing systems such as 100s and EuroGOOS, identify additional customers of sensor system data, and publish results of previous work in peer-reviewed journals to increase agency and scientific awareness and confidence in the technology. Priority recommendations and conclusions for ACT entailed highlighting the value of integrated sensor systems for vessels of opportunity through articles in the popular press, and marine science. [PDF contains 28 pages]
Resumo:
ENGLISH: The accuracy and precision of dolphin school size estimates based on aerial photograph counts were examined using data collected on recent aerial and ship surveys. These estimates were found to be accurate during a 1979research cruise aboard a tuna purse-seiner; dolphin schools were photographed from the ship’s helicopter, encircled with the purse-seine, and then counted as the dolphins were released from the net. A comparison of photographic estimates with these counts indicated that the relationship was fairly close and gave no indication of significantly differing from 1:1. During a 1980 aerial study, photographic estimates from different schools, passes, and camera formats were compared and were found to be quite precise with a standard deviation of approximately 60/0 of school size. Photographic estimates were also compared with estimates made by aerial observers. Most observers tended to underestimate school size, particularly for large schools. The variability among observers was high, indicating that observers should be individually calibrated. SPANISH: Se examinó la exactitud y la precisión de las estimaciones de la magnitud de los cardúmenes de delfines basadas en el cálculo de las fotografías aéreas, usando los datos obtenidos en los últimos reconocimientos aéreos y de los barcos. En 1979, durante un crucero de investigación en un cerquero atunero, se encontró que estas estimaciones eran acertadas; se fotografiaron los cardúmenes de delfines desde un helicóptero del barco, cercados con la red y luego se contaron a medida que se libraban los delfines de la red. Una comparación de las estimaciones fotográficas con estos cálculos indicó que la relación era bastante aproximada y no hubo indicación que se diferenció significativamente de la razón 1:1. Durante un estudio aéreo en 1980, se compararon las estimaciones fotográficas de diferentes del cardúmenes, en los pases y los formatos de las cámaras y se encontró que eran bastante precisos, con una desviación normal de cerca del 60/0 de la magnitud cardumen. Se compararon también las estimaciones fotográficas con las estimaciones realizadas por los observadores aéreos. La mayoría de los observadores tienden a subestimar la magnitud de los cardúmenes, especialmente los cardúmenes grandes. La variabilidad entre los observadores fue elevada, lo que indica que se deben calibrar individualmente los datos de observadores. (PDF contains 39 pages.)
Resumo:
Estimates of dolphin school sizes made by observers and crew members aboard tuna seiners or by observers on ship or aerial surveys are important components of population estimates of dolphins which are involved in the yellowfin tuna fishery in the eastern Pacific. Differences in past estimates made from tuna seiners and research ships and aircraft have been noted by Brazier (1978). To compare various methods of estimating dolphin school sizes a research cruise was undertaken with the following major objectives: 1) compare estimates made by observers aboard a tuna seiner and in the ship's helicopter, from aerial photographs, and from counts made at the backdown channel, 2) compare estimates of observers who are told the count of the school size after making their estimate to the observer who is not aware of the count to determine if observers can learn to estimate more accurately, and 3) obtain movie and still photographs of dolphin schools of known size at various stages of chase, capture and release to be used for observer training. The secondary objectives of the cruise were to: 1) obtain life history specimens and data from any dolphins that were killed incidental to purse seining. These specimens and data were to be analyzed by the U.S. National Marine Fisheries Service ( NMFS ) , 2) record evasion tactics of dolphin schools by observing them from the helicopter while the seiner approached the school, 3) examine alternative methods for estimating the distance and bearing of schools where they were first sighted, 4) collect the Commission's standard cetacean sighting, set log and daily activity data and expendable bathythermograph data. (PDF contains 31 pages.)
Resumo:
ENGLISH: In May 1971, a joint united states - Mexican experiment, Project Little Window 2, (LW-2) involving data collected by satellite, aircraft and ship sensors was made in the southern part of the Gulf of California. LW-2 was planned as an improved and enlarged version of LW-l (conducted the previous year; Stevenson and Miller, 1971) with field work scheduled to be made within a 200 by 200 km square region in the Gulf of California. The purposes of the new field study were to determine through coordinated measurements from ships, aircraft and satellites, the utility of weather satellites to measure surface temperature features of the ocean from space and specifically to evaluate the high resolution infrared sensors aboard N~ 1, ITOS 1 and NIMBUS 4 and to estimate the magnitude of the atmospheric correction factors needed to bring the data from the spacecraft sensors into agreement with surface measurements. Due to technical problems during LW-2, however, useful data could not be obtained from ITOS 1 and NIMBUS 4 so satellite information from only NOAA-1 was available for comparison. In addition, a new purpose was added, i.e., to determine the feasibility of using an Automatic picture Transmission (APT) receiver on shore and at sea to obtain good quality infrared data for the local region. SPANISH: En mayo 1971, los Estados Unidos y México realizaron un experimento en conjunto, Proyecto Little Window 2 (LW-2), en el que se incluyen datos obtenidos mediante captadores de satélites, aviones y barcos en la parte meridional del Golfo de California. Se planeó LW-2 para mejorar y ampliar el proyecto de LW-l (conducido el año anterior; Stevenson y Miller, 1971), realizándose el trabajo experimental en una región de 200 por 200 km cuadrados, en el Golfo de California. El objeto de este nuevo estudio experimental fue determinar mediante reconocimientos coordinados de barcos, aviones y satélites la conveniencia de los satélites meteorológicos para averiguar las características de la temperatura superficial del océano desde el espacio, y especialmente, evaluar los captadores infrarrojos de alta resolución a bordo de NOAA 1, ITOS 1 Y NIMBUS 4, y estimar la magnitud de los factores de corrección atmosféricos necesarios para corregir los datos de los captadores espaciales para que concuerden con los registros de la superficie. Sin embargo, debido a problemas técnicos durante LW-2, no fue posible obtener datos adecuados de ITOS 1 y NIMBUS 4, as1 que solo se pudo disponer de la información de NOAA 1 para hacer las comparaciones. Además se quiso determinar la posibilidad de usar un receptor de Trasmisión Automático de Fotografias (APT) en el mar para obtener datos infarojos de buena calidad en la región local. (PDF contains 525 pages.)
Resumo:
The distinguished character of Particularly Sensitive Sea Areas (PSSAs) is that every application for PSSAs must be accompanied by Associated Protected Measures (APMs) which can make PSSAs efficient in practice.1 That is why APMs are regarded as the core feature of every PSSA.2 APM is “an international rule or standard that falls within the purview of an international maritime organization (IMO) and regulates international maritime activities for the protection of the area at risk.” So far, APMs have been approved by IMO as following: -Compulsory or recommended pilotage -Mandatory ship reporting -An area to be avoided -Traffic separation schemes -Discharge prohibition or regulations -Mandatory no anchoring areas -Deep water routes -Emission control areas (PDF contains 5 pages)