33 resultados para Taxation--Law and legislation--South Carolina


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fecundity in striped mullet (Mugil cephalus) from South Carolina correlated highly with length and weight, but not with age. Oocyte counts ranged from 4.47 × 105 to 2.52 × 106 in 1998 for fish ranging in size from 331 mm to 600 mm total length, 2.13 × 105to 3.89 × 106in 1999 for fish ranging in size from 332 mm to 588 mm total length, and 3.89 × 105 to 3.01 × 106 in 2000 for fish ranging in size from 325 mm to 592 mm total length. The striped mullet in this study had a high degree of variability in the size-at-age relation-ship; this variability was indicative of varied growth rates and compounded the errors in estimating fecundity at age. The stronger relationship of fecundity to fish size allowed a much better predictive model for potential fecundity in striped mullet. By comparing fecundity with other measures of reproductive activity, such as the gonadosomatic index, histological examination, and the measurement of mean oocyte diameters, we determined that none of these methods by themselves were adequate to determine the extent of reproductive development. Histological examinations and oocyte diameter measurements revealed that fecundity counts could be made once developing oocytes reached 0.400 μm or larger. Striped mullet are isochronal spawners; therefore fecundity estimates for this species are easier to determine because oocytes develop at approximately the same rate upon reaching 400 μm. This uniform development made oocytes that were to be spawned easier to count. When fecundity counts were used in conjunction with histological examination, oocyte diameter measurements, and gonadosomatic index, a more complete measure of reproductive potential and the timing of the spawning season was possible. In addition, it was determined that striped mullet that recruit into South Carolina estuaries spawn from October through April.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 1784 legal-size (≥356 mm TL) hatchery-produced red drum (Sciaenops ocellatus) were tagged and released to estimate tag-reporting levels of recreational anglers in South Carolina (SC) and Georgia (GA). Twelve groups of legal-size fish (~150 fish/group) were released. Half of the fish of each group were tagged with an external tag with the message “reward” and the other half of the fish were implanted with tags with the message “$100 reward.” These fish were released into two estuaries in each state (n=4); three replicate groups were released at different sites within each estuary (n=12). From results obtained in previous tag return experiments conducted by wildlife and fisheries biologists, it was hypothesized that reporting would be maximized at a reward level of $100/tag. Reporting level for the “reward” tags was estimated by dividing the number of “reward” tags returned by the number of “$100 reward” tags returned. The cumulative return level for both tag messages was 22.7 (±1.9)% in SC and 25.8 (±4.1)% in GA. These return levels were typical of those recorded by other red drum tagging programs in the region. Return data were partitioned according to verbal survey information obtained from anglers who reported tagged fish. Based on this partitioned data set, 14.3 (±2.1)% of “reward” tags were returned in SC, and 25.5 (±2.3)% of “$100 reward” tags were returned. This finding indicates that only 56.7% of the fish captured with “reward” tags were reported in SC. The pattern was similar for GA where 19.1 (±10.6)% of “reward” message tags were returned as compared with 30.1 (±15.6)% for “$100 reward” message tags. This difference yielded a reporting level of 63% for “reward” tags in GA. Currently, 50% is used as the estimate for the angler reporting level in population models for red drum and a number of other coastal finfish species in the South Atlantic region of the United States. Based on results of our study, the commonly used reporting estimate may result in an overestimate of angler exploitation for red drum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 768,500 triploid grass carp ( Ctenopharyngodon idella Valenciennes) were stocked into the Santee Cooper reservoirs, South Carolina between 1989 and 1996 to control hydrilla ( Hydrilla verticillata (L.f.) Royle). Hydrilla coverage was reduced from a high of 17,272 ha during 1994 to a few ha by 1998. During 1997, 1998 and 1999, at least 98 triploid grass carp were collected yearly for population monitoring. Estimates of age, growth, and mortality, as well as population models, were used in the study to monitor triploid grass carp and predict population trends. Condition declined from that measured during a previous study in 1994. The annual mortality rate was estimated at 28% in 1997, 32% in 1998 and 39% in 1999; however, only the 1999 mortality rate was significantly different. Few (2 out of 98) of the triploid grass carp collected during 1999 were older than age 9. We expect increased mortality due to an aging population and sparse hydrilla coverage. During 1999, we estimated about 63,000 triploid grass carp system wide and project less than 3,000 fish by 2004, assuming no future stocking. management, population size Ctenopharyngodon idella, Hydrilla

Relevância:

100.00% 100.00%

Publicador:

Resumo:

South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to reconstruct the history of shore whaling in the southeastern United States, emphasizing statistics on the catch of right whales, Eubalaena glacialis, the preferred targets. The earliest record of whaling in North Carolina is of a proposed voyage from New York in 1667. Early settlers on the Outer Banks utilized whale strandings by trying out the blubber of carcasses that came ashore, and some whale oil was exported from the 1660s onward. New England whalemen whaled along the North Carolina coast during the 1720s, and possibly earlier. As some of the whalemen from the northern colonies moved to Nortb Carolina, a shore-based whale fishery developed. This activity apparently continued without interruption until the War of Independence in 1776, and continued or was reestablished after the war. The methods and techniques of the North Carolina shore whalers changed slowly: as late as the 1890s they used a drogue at the end of the harpoon line and refrained from staying fast to the harpooned whale, they seldom employed harpoon guns, and then only during the waning years of the fishery. The whaling season extended from late December to May, most successfully between February and May. Whalers believed they were intercepting whales migrating north along the coast. Although some whaling occurred as far north as Cape Hatteras, it centered on the outer coasts of Core, Shackleford, and Bogue banks, particularly near Cape Lookout. The capture of whales other than right whales was a rare event. The number of boat crews probably remained fairly stable during much of the 19th century, with some increase in effort in the late 1870s and early 1880s when numbers of boat crews reached 12 to 18. Then by the late 1880s and 1890s only about 6 crews were active. North Carolina whaling had become desultory by the early 1900s, and ended completely in 1917. Judging by export and tax records, some ocean-going vessels made good catches off this coast in about 1715-30, including an estimated 13 whales in 1719, 15 in one year during the early 1720s, 5-6 in a three-year period of the mid to late 1720s, 8 by one ship's crew in 1727, 17 by one group of whalers in 1728-29, and 8-9 by two boats working from Ocracoke prior to 1730. It is impossible to know how representative these fragmentary records are for the period as a whole. The Carolina coast declined in importance as a cruising ground for pelagic whalers by the 1740s or 1750s. Thereafter, shore whaling probably accounted for most of the (poorly documented) catch. Lifetime catches by individual whalemen on Shackleford Banks suggest that the average annual catch was at least one to two whales during 1830·80, perhaps about four during the late 1870s and early 1880s, and declining to about one by the late 1880s. Data are insufficient to estimate the hunting loss rate in the Outer Banks whale fishery. North Carolina is the only state south of New Jersey known to have had a long and well established shore whaling industry. Some whaling took place in Chesapeake Bay and along the coast of Virginia during the late 17th and early 18th centuries, but it is poorly documented. Most of the rigbt whales taken off South Carolina, Georgia, and northern Florida during the 19th century were killed by pelagic whalers. Florida is the only southeastern state with evidence of an aboriginal (pre-contact) whale fishery. Right whale calves may have been among the aboriginal whalers' principal targets. (PDF file contains 34 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tourism driven development and coastal gentrification have resulted in a notable decline in traditional coastaldependent businesses on the South Carolina (SC) coast. We examined the sustainability of these businesses by assessing tourists’ demand for local, traditional, and marine related products and services. The research integrated focus groups and an intercept-based mail survey. This paper reports selected survey results and discusses how the findings will be incorporated into small-business training materials. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beachfront jurisdictional lines were established by the South Carolina Beachfront Management Act (SC Code §48- 39-250 et seq.) in 1988 to regulate the new construction, repair, or reconstruction of buildings and erosion control structures along the state’s ocean shorelines. Building within the state’s beachfront “setback area” is allowed, but is subject to special regulations. For “standard beaches” (those not influenced by tidal inlets or associated shoals), a baseline is established at the crest of the primary oceanfront sand dune; for “unstabilized inlet zones,” the baseline is drawn at the most landward point of erosion during the past forty years. The parallel setback line is then established landward of the baseline a distance of forty times the long-term average annual erosion rate (not less than twenty feet from the baseline in stable or accreting areas). The positions of the baseline and setback line are updated every 8-10 years using the best available scientific and historical data, including aerial imagery, LiDAR, historical shorelines, beach profiles, and long-term erosion rates. One advantage of science-based setbacks is that, by using actual historical and current shoreline positions and beach profile data, they reflect the general erosion threat to beachfront structures. However, recent experiences with revising the baseline and setback line indicate that significant challenges and management implications also exist. (PDF contains 3 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft engineering solutions are the current standard for addressing coastal erosion in the US. In South Carolina, beach nourishment from offshore sand deposits and navigation channels has mostly replaced construction of seawalls and groins, which were common occurrences in earlier decades. Soft engineering solutions typically provide a more natural product than hard solutions, and also eliminate negative impacts to adjacent areas which are often associated with hard solutions. A soft engineering solution which may be underutilized in certain areas is shoal manipulation. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: