21 resultados para Spatial variation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pacific herring (Clupea pallasii) from the Gulf of Alaska were screened for temporal and spatial genetic variation with 15 microsatellite loci. Thirteen collections were examined in this study: 11 from Southeast Alaska and 2 from Prince William Sound, Alaska. Although FST values were low, a neighbor-joining tree based on genetic distance, homogeneity, and FST values revealed that collectively, the Berners Bay and Lynn Canal (interior) collections were genetically distinct from Sitka Sound and Prince of Wales Island (outer-coastal) collections. Temporal genetic variation within regions (among three years of Berners Bay spawners and between the two Sitka Sound spawners) was zero, whereas 0.05% was attributable to genetic variation between Berners Bay and Sitka Sound. This divergence may be attributable to environmental differences between interior archipelago waters and outer-coast habitats, such as differences in temperature and salinity. Early spring collections of nonspawning Lynn Canal herring were nearly genetically identical to collections of spawning herring in Berners Bay two months later—an indication that Berners Bay spawners over-winter in Lynn Canal. Southeast Alaskan herring (collectively) were significantly different from those in Prince William Sound. This study illustrates that adequate sample size is needed to detect variation in pelagic fish species with a large effective population size, and microsatellite markers may be useful in detecting low-level genetic divergence in Pacific herring in the Gulf of Alaska.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Four broad regions of the western United States within which annual streamflows exhibit strong spatial coherence are identified using principal component analysis with a varimax rotation. Geographically, the four regions encompass the Pacific Northwest, Far West-Great Basin, Central Rockies-High Plains, and Northern Great Plains. These regions are really consistent with previously documented, descriptively derived streamflow regimes as well as with general atmospheric circulation and precipitation modes of variation. Collectively, the four regional components account for nearly 63 percent of the total annual variation in western U.S. streamflow. The time history of most principal component patterns exhibit little or no persistence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red snapper (Lutjanus campechanus) in the United States waters of the Gulf of Mexico (GOM) has been considered a single unit stock since management of the species began in 1991. The validity of this assumption is essential to management decisions because measures of growth can differ for nonmixing populations. We examined growth rates, size-at-age, and length and weight information of red snapper collected from the recreational harvests of Alabama (n=2010), Louisiana (n=1905), and Texas (n =1277) from 1999 to 2001. Ages were obtained from 5035 otolith sections and ranged from one to 45 years. Fork length, total weight, and age-frequency distributions differed significantly among all states; Texas, however, had a much higher proportion of smaller, younger fish. All red snapper showed rapid growth until about age 10 years, after which growth slowed considerably. Von Bertalanffy growth models of both mean fork length and mean total weight-at-age predicted significantly smaller fish at age from Texas, whereas no differences were found between Alabama and Louisiana models. Texas red snapper were also shown to differ significantly from both Alabama and Louisiana red snapper in regressions of mean weight at age. Demographic variation in growth rates may indicate the existence of separate management units of red snapper in the GOM. Our data indicate that the red snapper inhabiting the waters off Texas are reaching smaller maximum sizes at a faster rate and have a consistently smaller total weight at age than those collected from Louisiana and Alabama waters. Whether these differences are environmentally induced or are the result of genetic divergence remains to be determined, but they should be considered for future management regulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of our study was to understand the spatial and temporal variation in spawning and settlement of gray snapper (Lutjanus griseus) along the West Florida shelf (WFS). Juvenile gray snapper were collected over two consecutive years from seagrass meadows with a benthic scrape and otter trawl. Spawning, settlement, and growth patterns were compared across three sampling regions (Panhandle, Big bend, and Southwest) by using otolith microstructure. Histology of adult gonads was also used for an independent estimate of spawning time. Daily growth increments were visible in the lapilli of snapper 11–150 mm standard length; ages ranged from 38 to 229 days and estimated average planktonic larval duration was 25 days. Estimated growth rates ranged from 0.60 to 1.02 mm/d and did not differ among the three sampling regions, but did differ across sampling years. Back-calculated fertilization dates from otoliths indicated that juveniles in the Panhandle and Big Bend were mainly summer spawned fish, whereas Southwest juveniles had winter and summer fertilization dates. Settlement occurred during summer both years and in the winter of 1997 for the southern portion of the WFS. Moon phase did not appear to be strongly correlated with fertilization or settlement. Histological samples of gonads from adults collected near the juvenile sampling areas indicated a summer spawning period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of how biota can be used to monitor ecosystem health and assess impacts by human alterations such as land use and management measures taken at different spatial scales is critical for improving the ecological quality of aquatic ecosystems. This knowledge in Uganda is very limited or unavailable yet it is needed to better understand the relationship between environmental factors at different spatial scales, assemblage structure and taxon richness of aquatic ecosystems. In this study, benthic invertebrate community patterns were sampled between June 2001 and April 2002 and analysed in relation to water quality and catchment land use patterns from three shallow near-shore bays characterized by three major land uses patterns: urban (Murchison Bay); semi-urban (Fielding Bay); rural (Hannington Bay). Variations in density and guild composition of benthic macro-invertebrates communities were evaluated using GIS techniques along an urban-rural gradient of land use and differences in community composition were related to dissolved oxygen and conductivity variation. Based on numerical abundance and tolerance values, Hilsenhoff's Biotic Index ofthe invertebrates was determined in order to evaluate the relative importance of water quality in the three bays. Murchison Bay supported a relatively taxa-poor invertebrate assemblage mainly comprising stenotopic and eurytopic populations of pollution-tolerant groups such as worms and Chironomus sp. with an overall depression in species diversity. On the contrary, the communities in Fielding and Hannington bays were quite similar and supported distinct and diverse assemblages including pollution-intolerant forms such as Ephemeroptera (mayflies), Odonata (dragonflies). The Hilsenhoff Biotic Index in Murchison Bay was 6.53. (indicating poor water quality) compared to 6.34 for Fielding Bay and 5.78 for Hannington Bay (both indicating fair water quality). The characterization of maximum taxa richness balanced among taxa groups with good representation of intolerant individuals in Hannington Bay relative to Fielding and Murchison bays concludes that the bay is the cleanest in terms of water quality. Contrary, the dominance of few taxa with many tolerant iqdividuals present in Murchison Bay indicates that the bay is degraded in terms of water quality. These result are ofimportance when planning conservation and management measures, implementing large-scale biomonitoring programs, and predicting how human alterations (e.g nutrient loading) affect water ecosystems. Therefore, analysis of water quality in relation to macro-invertebrate community composition patterns as bio-indicators can lead to further understanding of their responses to environmental manipulations and perturbations.