19 resultados para Simulate
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A local climate model (LCM) has been developed to simulate the modern and 18 ka climate of the southwestern United States. ... LCM solutions indicate summers were about 1°C cooler and winters 11°C cooler at 18 ka. Annual PREC increased 68% at 18 ka, with large increases in spring and fall PREC and diminished summer monsoonal PREC. ... Validation of simulations of 18 ka climate indicate general agreement with proxy estimates of climate for that time. However, the LCM estimates of summer temperatures are about 5 to 10°C higher than estimates from proxy reconstructions.
Resumo:
As the global population has increased, so have human influences on the global environment. ... How can we better understand and predict these natural and potential anthropogenic variations? One way is to develop a model that can accurately describe all the components of the hydrologic cycle, rather than just the end result variables such as precipitation and soil moisture. If we can predict and simulate variations in evaporation and moisture convergence, as well as precipitation, then we will have greater confidence in our ability to at least model precipitation variations. Therefore, we describe here just how well we can model relevant aspects of the global hydrologic cycle. In particular, we determine how well we can model the annual and seasonal mean global precipitation, evaporation, and atmospheric water vapor transport.
Resumo:
Understanding the link between climate and regional hydrologic processes is of primary importance in estimating the possible impact of future climate change and in the validation of climate models that attempt to simulate such changes. Two distinct problems need to be addressed: quantitatively establishing the link between changes in climate and the hydrologic cycle, and determining how these changes are expressed over differing temporal and spatial scales. To solve these problems, our interdisciplinary group is studying important aspects of hydrology, paleolimnology, geochemistry, and paleontology as they apply to climate-driven hydrologic changes.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.