149 resultados para Shoreline changes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: Morphometric studies by Godsil (1948), Godsil and Greenhood (1951), Royce (1953) and Schaefer (1952, 1955) have indicated that the yellowfin tuna of the Eastern Pacific are distinct from those of the Central Pacific. Tagging of yellowfin tuna by the California Department of Fish and Game, and by the Inter-American Tropical Tuna Commission in the Eastern Pacific, and by the Pacific Oceanic Fishery Investigations in the Central Pacific, have not yet revealed any migrations between these areas. Shimada and Schaefer (1956) have compared changes in population abundance and fishing intensity, considering the population in the Eastern Pacific as a separate entity. They conclude " ... the amount of fishing has had a real effect upon the stock of Eastern Pacific yellowfin tuna, taken in the aggregate, over the period studied. The evidence suggests also that for this species the intensity of fishing in some recent years has reached and might have even exceeded the level corresponding to the maximum equilibrium yield." Tagging experiments by the California Department of Fish and Game and by the Inter-American Tropical Tuna Commission have yielded returns in the order of one to five percent (Roedel 1954, and unpublished data of both agencies), a level much lower than that at which fishing intensity would be expected to noticeably affect the population size. These results are probably a reflection of the inadequacies of the present tagging methods, but they could lend doubt to the conclusions of Shimada and Schaefer. It is desirable, therefore, to examine other, independent, evidence as to the effects of fishing on the population. At the high levels of fishing intensity suggested by Shimada and Schaefer, in addition to changes in quantity, measurable changes would be expected to have occurred in the quality of the yellowfin tuna stocks, because the average age and size of the fish would have been reduced by the high mortality rates accompanying high fishing intensities. A continuing regular program of sampling catches and determining their length composition, to assess changes in the size composition of the stocks, was initiated by the Commission in 1954 but direct measurements are not available for the earlier, more dynamic period of growth of the fishery. Consequently, other, more general indications of possible changes in the size composition were sought. SPANISH: Los estudios morfométricos efectudos por Godsil (1948), Godsil y Greenhood (1951), Royce (1953) y Schaefer (1952, 1955), han demostrado que el atún aleta amarilla del Pacífico Oriental es distinto del que habita el PacÍfico Central. Los experimentos del Departamento de Pesca y Caza de California y de la Comisión Interamericana del Atún Tropical en el Pacífico Oriental, así como los de las Investigaciones Pesqueras del Océano Pacífico en el Pacífico Central,consistentes en la marcación de atunes aleta amarilla, aún no han puesto de manifiesto movimientos migratorios entre dichas áreas. Shimada y Schaefer (1956) han hecho estudios comparativos sobre la abundancia de la población y la intensidad de la pesca, considerando a la población del Pacífico Oriental como una entidad separada. Su conclusión es que " ... la intensidad de la pesca ha tenido un definido efecto sobre la población del atún aleta amarilla del Pacífico Oriental, tomada en conjunto, a lo largo del período estudiado. La evidencia de que se dispone sugiere así mismo que, por lo que hace a esta especie, la intensidad de la pesca en los últimos años ha alcanzado y quizás aún sobrepasado el nivel correspondiente a la máxima pesca de equilibrio". Los experimentos de mar•cación del Departamento de Pesca y Caza de California y de la Comisión Interamericana del Atún Tropical han producido recuperaciones ,entre el uno y el cinco por ciento (Roedel 1954 y datos inéditos de ambos organismos), lo que constituye un nivel mucho más bajo de aquél en que la intensidad de la pesca podría considerarse que afectaría notablemente el tamaño de la población. Estos resultados reflejan probablemente lo inadecuados que son aún los métodos de marcación, pero ellos podrían, quizá, poner en tela de juicio las conclusiones de Shimada y Schaefer. Por lo tanto,es deseable examinar otras fuentes de evidencia independientes, relacionadas con el efecto que la pesca tiene sobre la población. En efecto, si los altos índices de pesca sugeridos por Shimada y Schaefer son correctos, es de esperar que, además de los cambios en la magnitud de la población, se hayan producido otros, concomitantes y sensibles, en la calidad de los stocks de atún aleta amarilla, puesto que tanto el promedio de edad como el de tamaño de los individuos habrían disminuído debido a las elevadas tasas de mortalidad inherentes a las altas intensidades de pesca. En 1954 la Comisión inició un programa ininterrumpido para tomar muestras y determinar en ellas las frecuencias de tallas y evaluar de este modo los cambios correlativos que tuvieran lugar en los stocks pero, infortunadamente, este sistema de evaluación directa no fué practicado en el período anterior, que fué precisamente el de rápida expansión de la pesquería. En tal virtud, hubo de ser necesario buscar indicios más generales referentes a los cambios posibles en la composición de tamaños. (PDF contains 20 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eastern Bering Sea is a major marine ecosystem containing some of the largest populations of groundfish, crabs, birds, and marine mammals in the world. Commercial catches of groundfish in this region have averaged about 1.6 million tons (t) annually in 1970-86. This report describes the species and relative importance of species in the eastern Bering Sea groundfish complex, the environment in which they live, and the history of the fisheries and management during the years 1954 - 1985. Historical changes in abundance and the condition of the principal species at the end of this first 30 years of exploitation are also examined. Results suggest that the biomass of the groundfish complex is characterized by variability rather than stability. The most reliable data (1979 to 1985) suggests that the biomass of the complex fluctuated between 11.8 and 15.7 million t. Even greater variability is suggested by the less reliable data from earlier years. Because of its dominance in the complex and wide fluctuations in abundance, walleye pollock (Theragra chalcogramma) is primarily responsible for the major variations in abundance of the complex. After 30 years of exploitation, the complex was generally in excellent condition. (PDF file contains 100 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENGLISH: The rapid growth of the Eastern Pacific fishery for yellowfin and skipjack tuna since the end of World War II has given rise to questions concerning the rational utilization of these resources. As part of the Inter-American Tropical Tuna Commission's program of research designed to investigate these problems, a study was undertaken to determine from the historical records of the fishery the effects of fishing upon the stocks of yellowfin and skipjack tuna of the Eastern Pacific region and to evaluate the present condition of these stocks with respect to the maximum equilibrium yield. SPANISH: EI rápido crecimiento, desde la terminación de la Segunda Guerra Mundial, de la pesquería de atún aleta amarilla y barrilete en el Pacifico Oriental, ha dado lugar a que se hagan algunos comentarios sabre la racional utilización de estos recursos. Como parte del programa de la Comisión Interamericana del Atún Tropical designado para la investigación de estos problemas, un estudio fué llevado a cabo para determinar, de los informes historicós de la pesquería, los efectos de la pesca sobre los stocks de atún aleta amarilla y barrilete de la región del Pacifico Oriental y para evaluar la presente condición de estos stocks con respecto al máximo rendimiento de equilibria. (PDF contains 123 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the quality of canned tilapia packed in oil and tomato sauce at ambient and accelerated temperatures were examined by microbiological and sensory evaluation. Canned tilapia were found to be microbiologically stable and organoleptically acceptable after six months storage period. Total viable count (TVC) were generally low (2.5 x 10 super(2)). Thermophilic organisms (Clostridium) were absent in all samples. The yield of edible part of tilapia was 72% after dressing. Pre-cooking of tilapia resulted in a loss of 21.5% of its dressed weight. Comparison of canned tilapia with available canned fishes (geisha and bonga) showed similar trends in the taste, proximate composition, microbiological stability and sensory scores.The possibility for investment in tilapia cannary was also investigated. It was found that production of canned tilapia will be economically viable if a ten hectare tilapia farm is used as a source of raw materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper sets out to explore how Uganda's lake Victoria fishery has been managed. It explores the management of the fishery during the protectorate period, and argues that the apparent success of regulation during this time may be attributed to the very heightened controls arising from Sleeping Sickness Controls. Once these were removed, entry into the fishery was rapid and uncontrolled, and the resultant impact on fish stocks was quickly felt. With its huge area, considerable shoreline, and innumerable islands, the lake Victoria fisheries service was quickly overwhelmed and disbanded as a result. In the early independence years, the Republic's government focused on developing the fishery, plans thwarted by turmoil of, and following, Idi Amin's reign. More recently, the fishery has prospered from Uganda's entry into the Nile perch fillet export market, which ahs adversely affected stocks. We present and comment on recently collected data that considers fishers' impressions of the status of the fishery, regulations and future managerial possibilities, and comment on these in the light of recent changes to Uganda's fisheries administration

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puget Sound shorelines have historically provided a diversity of habitats that support a variety of aquatic resources throughout the region. These valued natural resources are iconic to the region and remain central to both the economic vitality and community appreciation of Puget Sound. Deterioration of upland and nearshore shoreline habitats, have placed severe stress on many aquatic resources within the region (PSAT, 2007). Since a majority of Washington State shorelines are privately owned, regulatory authority to legislate restoration on private property is limited in scope and frequency. Washington States’ Shoreline Management Act (RCW 90.58) requires local jurisdictions to plan for appropriate future shoreline uses. Under the Act, future development can be regulated to protect existing ecological functions, but lost functions cannot be restored without purchase or compensation of restored areas. Therefore, questions remains as to the ecological resilience of the region when considering cumulative effect of existing/ongoing shoreline development constrained by limited shoreline restoration opportunities. In light of these questions, this analysis will explore opportunities to promote restoration on privately owned shorelines within Puget Sound. These efforts are intended to promote more efficient ecosystem management and improve ecosystem-wide ecological functions. From an economics perspective, results of past shoreline management can generally be characterized as both market and government failure in effectively protecting the publics’ interest in maintaining healthy shoreline resources. Therefore coastal development has proceeded in spite of negative externalities and market imbalances resulting in inefficient resource management driven by the individual ambitions of private shoreline property owners to develop their property to their highest and best use. Federally derived property rights will protect continuation of existing uses along privately owned shorelines; therefore, a fundamental challenge remains in sustainable management of existing shoreline resources while also restoring ecological functions lost to past mistakes in an effort to increase the ecologic resiliency within the region. (PDF contains 5 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How is climate change affecting our coastal environment? How can coastal communities adapt to sea level rise and increased storm risk? These questions have garnered tremendous interest from scientists and policy makers alike, as the dynamic coastal environment is particularly vulnerable to the impacts of climate change. Over half the world population lives and works in a coastal zone less than 120 miles wide, thereby being continuously affected by the changes in the coastal environment [6]. Housing markets are directly influenced by the physical processes that govern coastal systems. Beach towns like Oak Island in North Carolina (NC) face severe erosion, and the tax assesed value of one coastal property fell by 93% in 2007 [9]. With almost ninety percent of the sandy beaches in the US facing moderate to severe erosion [8], coastal communities often intervene to stabilize the shoreline and hold back the sea in order to protect coastal property and infrastructure. Beach nourishment, which is the process of rebuilding a beach by periodically replacing an eroding section of the beach with sand dredged from another location, is a policy for erosion control in many parts of the US Atlantic and Pacific coasts [3]. Beach nourishment projects in the United States are primarily federally funded and implemented by the Army Corps of Engineers (ACE) after a benefit-cost analysis. Benefits from beach nourishment include reduction in storm damage and recreational benefits from a wider beach. Costs would include the expected cost of construction, present value of periodic maintenance, and any external cost such as the environmental cost associated with a nourishment project (NOAA). Federal appropriations for nourishment totaled $787 million from 1995 to 2002 [10]. Human interventions to stabilize shorelines and physical coastal dynamics are strongly coupled. The value of the beach, in the form of storm protection and recreation amenities, is at least partly capitalized into property values. These beach values ultimately influence the benefit-cost analysis in support of shoreline stabilization policy, which, in turn, affects the shoreline dynamics. This paper explores the policy implications of this circularity. With a better understanding of the physical-economic feedbacks, policy makers can more effectively design climate change adaptation strategies. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding fluctuations in tropical cyclone activity along United States shores and abroad becomes increasingly important as coastal managers and planners seek to save lives, mitigate damage, and plan for resilience in the face of changing storminess and sea-level rise. Tropical cyclone activity has long been of concern to coastal areas as they bring strong winds, heavy rains, and high seas. Given projections of a warming climate, current estimates suggest that not only will tropical cyclones increase in frequency, but also in intensity (maximum sustained winds and minimum central pressures). An understanding of what has happened historically is an important step in identifying potential future changes in tropical cyclone frequency and intensity. The ability to detect such changes depends on a consistent and reliable global tropical cyclone dataset. Until recently no central repository for historical tropical cyclone data existed. To fill this need, the International Best Track Archive for Climate Stewardship (IBTrACS) dataset was developed to collect all known global historical tropical cyclone data into a single source for dissemination. With this dataset, a global examination of changes in tropical cyclone frequency and intensity can be performed. Caveats apply to any historical tropical cyclone analysis however, as the data contributed to the IBTrACS archive from various tropical cyclone warning centers is still replete with biases that may stem from operational changes, inhomogeneous monitoring programs, and time discontinuities. A detailed discussion of the difficulties in detecting trends using tropical cyclone data can be found in Landsea et al. 2006. The following sections use the IBTrACS dataset to show the global spatial variability of tropical cyclone frequency and intensity. Analyses will show where the strongest storms typically occur, the regions with the highest number of tropical cyclones per decade, and the locations of highest average maximum wind speeds. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Millennium Ecosystem Assessment’s chapter “Coastal Systems” (Agardy and Alder 2005), 40% of the world population falls within 100 km of the coast. Agardy and Alder report that population densities in coastal regions are three times those of inland regions and demographic forecasts suggest a continued rise in coastal populations. These high population levels can be partially traced to the abundance of ecosystem services provided in the coastal zone. While populations benefit from an abundance of services, population pressure also degrades existing services and leads to increased susceptibility of property and human life to natural hazards. In the face of these challenges, environmental administrators on the coast must pursue agendas which reflect the difficult balance between private and public interests. These decisions include maintaining economic prosperity and personal freedoms, protecting or enhancing the existing flow of ecosystem services to society, and mitigating potential losses from natural hazards. (PDF contains 5 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately two-thirds of coastal and Great Lakes states have some type of shoreline construction setback or construction control line requiring development to be a certain distance from the shoreline or other coastal feature (OCRM, 2008). Nineteen of 30 coastal states currently use erosion rates for new construction close to the shoreline. Seven states established setback distances based on expected years from the shoreline: the remainder specify a fixed setback distance (Heinz Report, 2000). Following public hearings by the County of Kauai Planning Commission and Kauai County Council, the ‘Shoreline Setback and Coastal Protection Ordinance’ was signed by the Mayor of Kauai on January 25, 2008. After a year of experience implementing this progressive, balanced shoreline setback ordinance several amendments were recently incorporated into the Ordinance (#887; Bill #2319 Draft 3). The Kauai Planning Department is presently drafting several more amendments to improve the effectiveness of the Ordinance. The intent of shoreline setbacks is to establish a buffer zone to protect shorefront development from loss due to coastal erosion - for a period of time; to provide protection from storm waves; to allow the natural dynamic cycles of erosion and accretion of beaches and dunes to occur; to maintain beach and dune habitat; and, to maintain lateral beach access and open space for the enjoyment of the natural shoreline environment. In addition, a primary goal of the Kauai setback ordinance is to avoid armoring or hardening of the shore which along eroding coasts has been documented to ultimately eliminate the fronting beach. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beachfront jurisdictional lines were established by the South Carolina Beachfront Management Act (SC Code §48- 39-250 et seq.) in 1988 to regulate the new construction, repair, or reconstruction of buildings and erosion control structures along the state’s ocean shorelines. Building within the state’s beachfront “setback area” is allowed, but is subject to special regulations. For “standard beaches” (those not influenced by tidal inlets or associated shoals), a baseline is established at the crest of the primary oceanfront sand dune; for “unstabilized inlet zones,” the baseline is drawn at the most landward point of erosion during the past forty years. The parallel setback line is then established landward of the baseline a distance of forty times the long-term average annual erosion rate (not less than twenty feet from the baseline in stable or accreting areas). The positions of the baseline and setback line are updated every 8-10 years using the best available scientific and historical data, including aerial imagery, LiDAR, historical shorelines, beach profiles, and long-term erosion rates. One advantage of science-based setbacks is that, by using actual historical and current shoreline positions and beach profile data, they reflect the general erosion threat to beachfront structures. However, recent experiences with revising the baseline and setback line indicate that significant challenges and management implications also exist. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Examination of 40 time series of multidisciplinary environmental variables from the Pacific Ocean and the Americas, collected in 1968 to 1984, demonstrated the remarkable consistency of a major climate-related, step-like change in 1976. To combine the 40 variables (e.g., air and water temperatures, Southern Oscillation, chlorophyll, geese, salmon, crabs, glaciers, atmospheric dust, coral, carbon dioxide, winds, ice cover, Bering Strait transport) into a single time series, standard variants of individual annual values (subtracting the mean and dividing by a standard deviation) were averaged. Analysis of the resulting time series showed that the single step in 1976, separating the 1968-1975 period from the 1977-1984 period, accounted for 89% of variance within the composite time series. Apparently, one of the Earth's large ecosystems occasionally undergoes large abrupt shifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over much of Britain, 1995 and 1996 have been perceived as drought years. To evaluate the impact that local climatic conditions are having upon successional changes in higher vegetation (macrophytes), Speakmans Pond in Epping Forest was surveyed and mapped in 1996. The results are related to previous vegetation surveys carried out in 1989 and 1991. In 1989 the dominant marginal vegetation was floating sweet-grass Glyceria fluitans, which also covered a major part of the main body of the pond. Other abundant species included soft rush Juncus effusus, reed mace Typha latifolia and yellow flag Iris pseudocorus. A small (central) area of open water contained bladderwort Utricularia vulgaris and white water-lily Nymphaea alba. A similar plant coverage was found in 1991, with a dominance of floating sweet-grass along the shallow eastern edge. A marked change in the pond was found during the 1996 survey of vegetation in July, when the pool was dry. The major plant cover now consisted of creeping bent Agrostis stolonifera, with isolated clumps of Yorkshire fog Holcus lanatus around the edges; both are terrestrial grasses found on land surrounding the pond. Rushes (Juncus) had increased their distribution round the margins of the pond, and the patch of yellow flag noted in 1989 and 1991 was not found in 1996. The deeper trenches were also dry, but a small patch of white water-lily remained adjacent to one of the trenches.