179 resultados para Rural credit -- Indonesa -- Lombok (Island)
Resumo:
The three areas in Rookery Bay, near Marco Island and Fakahatchee Bay were sampled from July 1971 through July 1972, and 1,006,640 individual animals were collected, of which the majority (55%) came from the Marco area. The large disparity between the catches at Marco and the remaining study areas was due mainly to the appearance of high numbers of species of polychaetes and echinoderms that were of very minor importance or absent from the catches in Rookery Bay and Fakahatchee Bay. When only the major classes of animals in the catch are considered (i.e., crustaceans, fish and mollusks) the total counts for Fakahatchee (298,830) and Marco (275,075) are quite comparable but both exceed Rookery Bay (119,388) by a considerable margin. The effects of the red tide outbreak in the summer of 1971 were apparently restricted to the Rookery Bay Sanctuary and may account for some of the observed differences. For the purposes of making controlled comparisons between the study areas, three common habitats were selected in each area so that a mud bottom habitat, a sand-shell bottom habitat and a vegetated bottom habitat were located in each of the study areas. Total catches by habitat types for crustaceans, fish and mollusks and certain of the more abundant species show clearly the overwhelming importance of the vegetated bottom as a habitat for animals. By habitat the vegetated areas had the most "indicator species" with five, the mud habitat was next with three and the sand-shell habitat third with two. Thus the vegetated habitat would be the best choice if a single habitat were to be used to detect environmental changes between study areas. (PDF contains 137 pages)
Resumo:
Why are SRS important? The answer is to be found in this well-structured survey under: SRS as food source; SRS as additional source of cash income; Role of SRS in social capital. An analysis of the threats to SRS and the potential management options for farmer managed aquatic systems are also available in this survey along with the following definition of SRS: SRS are defined as aquatic animals that can be harvested from farmer managed aquatic systems without regular stocking. (PDF contains 4 pages)
Resumo:
Without knowledge of basic seafloor characteristics, the ability to address any number of critical marine and/or coastal management issues is diminished. For example, management and conservation of essential fish habitat (EFH), a requirement mandated by federally guided fishery management plans (FMPs), requires among other things a description of habitats for federally managed species. Although the list of attributes important to habitat are numerous, the ability to efficiently and effectively describe many, and especially at the scales required, does not exist with the tools currently available. However, several characteristics of seafloor morphology are readily obtainable at multiple scales and can serve as useful descriptors of habitat. Recent advancements in acoustic technology, such as multibeam echosounding (MBES), can provide remote indication of surficial sediment properties such as texture, hardness, or roughness, and further permit highly detailed renderings of seafloor morphology. With acoustic-based surveys providing a relatively efficient method for data acquisition, there exists a need for efficient and reproducible automated segmentation routines to process the data. Using MBES data collected by the Olympic Coast National Marine Sanctuary (OCNMS), and through a contracted seafloor survey, we expanded on the techniques of Cutter et al. (2003) to describe an objective repeatable process that uses parameterized local Fourier histogram (LFH) texture features to automate segmentation of surficial sediments from acoustic imagery using a maximum likelihood decision rule. Sonar signatures and classification performance were evaluated using video imagery obtained from a towed camera sled. Segmented raster images were converted to polygon features and attributed using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999) for use in a geographical information system (GIS). (PDF contains 41 pages.)
Resumo:
(PDF contains 9 pages.)
Resumo:
What is special about Kaipara is that most recently, they have founded a federation of Self-Help Groups that work together to develop their own support network and to draw in the support of others. This is a sophisticated ‘home-grown’ support infrastructure that is the subject of this story. (Pdf contains 8 pages).
Resumo:
What began as a general desire to share messages about processes, technologies, lives and opportunities – among farming and fishing communities and those who work with them – has evolved into a network that shares meanings and lessons learnt. Now instead of relying on core funding or catalytic support, the STREAM Initiative is self-funded through the services its network provides to academic, development and other organizations. (Pdf contains 8 pages).
Resumo:
The distribution, abundance, and length composition of marine finfish, lobster, and squid in Long Island Sound were examined relative to season and physical features of the Sound, using Connecticut Department of Environmental Protection trawl survey data collected from 1984 to 1994. The following are presented: seasonal distribution maps for 59 species, abundance indices for 41 species, and length frequencies for 26 species. In addition, a broader view of habitat utilization in the Sound was examined by mapping aggregated catches (total catch per tow, demersal catch per tow, and pelagic catch per tow) and by comparing species richness and mean aggregate catch/tow by analysis of variance (ANOVA) among eight habitat types defined by depth interval and bottom type. For many individual species, seasonal migration patterns and preference for particular areas within Long Island Sound were evident. The aggregate distribution maps show that overall abundance was lower in the eastern Sound than the central and western portions. Demersal and pelagic temporal abundance show opposite trends—demersals were abundant in spring and declined through summer and fall, whereas pelagic abundance was low in spring and increased into fall. The analysis of habitat types revealed significant differences for both species richness and mean catch per tow. Generally, species richness was highest in habitats within the central area of the Sound and lowest in eastern habitats. The aggregate mean catch was highest in the western and central habitats, and declined eastward. (PDF file contains 199 pages.)
Resumo:
Assateague Island is an offshore bar comprising the south-eastern coast of Maryland and the northeastern coast of Virgina. It is part of the system of discontinuous barrier reefs or bars which occupy most of the Atlantic shoreline from Florida to Massachusetts. These are unstable bars, continuously influenced by storm winds and tides which provide a distinct and rigorous habitat for the vegetation there. General floras of the Delmarva Peninusla do not mention Assateague Island specifically. The objective is to prepare a catalog of the vascular plants of Assateague Island and to describe the communities in which they are found, in the hope it will add to the knowledge of barrier reef vegetation.
Resumo:
Eleven ichthyoplankton surveys were conducted (1 in 1972 and 10 between 1977 and 1979) in the northeastern Pacific Ocean over the continental shelf off Kodiak Island, Alaska. In the 677 neuston and 632 bongo tows, eggs or larvae of more than 80 fish taxa were found. They were present in every season and throughout the survey area, although more taxa and more individuals were found in summer than in other seasons. Among the more abundant species were the gadid Theragra chalcogramma and several hexagrammids and pleuronectids. The hexagrammids and several coUids were abundant in the neustonic layer, where they spent close to a year as larvae and prejuvenlles. Although the seasonal and geographic distribution of most taxa was complex, two patterns emerged: Late summer-fall spawners produce demersal eggs and have neustonic larvae that remain pelagic for several months (hexagrammids and some cottlds), and spring-summer spawners have pelagic eggs and larvae that spend several weeks in the plankton but are not closely associated with the surface (Theragra chalcogramma, pleuronectlds). (PDF file contains 95 pages.)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop, sponsored by the Hawaii-Pacific and Alaska Regional Partners, entitled Underwater Passive Acoustic Monitoring for Remote Regions at the Hawaii Institute of Marine Biology from February 7-9, 2007. The workshop was designed to summarize existing passive acoustic technologies and their uses, as well as to make strategic recommendations for future development and collaborative programs that use passive acoustic tools for scientific investigation and resource management. The workshop was attended by 29 people representing three sectors: research scientists, resource managers, and technology developers. The majority of passive acoustic tools are being developed by individual scientists for specific applications and few tools are available commercially. Most scientists are developing hydrophone-based systems to listen for species-specific information on fish or cetaceans; a few scientists are listening for biological indicators of ecosystem health. Resource managers are interested in passive acoustics primarily for vessel detection in remote protected areas and secondarily to obtain biological and ecological information. The military has been monitoring with hydrophones for decades;however, data and signal processing software has not been readily available to the scientific community, and future collaboration is greatly needed. The challenges that impede future development of passive acoustics are surmountable with greater collaboration. Hardware exists and is accessible; the limits are in the software and in the interpretation of sounds and their correlation with ecological events. Collaboration with the military and the private companies it contracts will assist scientists and managers with obtaining and developing software and data analysis tools. Collaborative proposals among scientists to receive larger pools of money for exploratory acoustic science will further develop the ability to correlate noise with ecological activities. The existing technologies and data analysis are adequate to meet resource managers' needs for vessel detection. However, collaboration is needed among resource managers to prepare large-scale programs that include centralized processing in an effort to address the lack of local capacity within management agencies to analyze and interpret the data. Workshop participants suggested that ACT might facilitate such collaborations through its website and by providing recommendations to key agencies and programs, such as DOD, NOAA, and I00s. There is a need to standardize data formats and archive acoustic environmental data at the national and international levels. Specifically, there is a need for local training and primers for public education, as well as by pilot demonstration projects, perhaps in conjunction with National Marine Sanctuaries. Passive acoustic technologies should be implemented immediately to address vessel monitoring needs. Ecological and health monitoring applications should be developed as vessel monitoring programs provide additional data and opportunities for more exploratory research. Passive acoustic monitoring should also be correlated with water quality monitoring to ease integration into long-term monitoring programs, such as the ocean observing systems. [PDF contains 52 pages]
Resumo:
A three day workshop on turbidity measurements was held at the Hawaii Institute of Marine Biology from August 3 1 to September 2, 2005. The workshop was attended by 30 participants from industry, coastal management agencies, and academic institutions. All groups recognized common issues regarding the definition of turbidity, limitations of consistent calibration, and the large variety of instrumentation that nominally measure "turbidity." The major recommendations, in order of importance for the coastal monitoring community are listed below: 1. The community of users in coastal ecosystems should tighten instrument design configurations to minimize inter-instrument variability, choosing a set of specifications that are best suited for coastal waters. The IS0 7027 design standard is not tight enough. Advice on these design criteria should be solicited through the ASTM as well as Federal and State regulatory agencies representing the majority of turbidity sensor end users. Parties interested in making turbidity measurements in coastal waters should develop design specifications for these water types rather than relying on design standards made for the analysis of drinking water. 2. The coastal observing groups should assemble a community database relating output of specific sensors to different environmental parameters, so that the entire community of users can benefit from shared information. This would include an unbiased, parallel study of different turbidity sensors, employing a variety of designs and configuration in the broadest range of coastal environments. 3. Turbidity should be used as a measure of relative change in water quality rather than an absolute measure of water quality. Thus, this is a recommendation for managers to develop their own local calibrations. See next recommendation. 4. If the end user specifically wants to use a turbidity sensor to measure a specific water quality parameter such as suspended particle concentration, then direct measurement of that water quality parameter is necessary to correlate with 'turbidity1 for a particular environment. These correlations, however, will be specific to the environment in which they are measured. This works because there are many environments in which water composition is relatively stable but varies in magnitude or concentration. (pdf contains 22 pages)
Resumo:
Sixty delegates from Indonesia, the Philippines, Thailand, Malaysia and India met at Lombok, Nusa Tenggara Barat (NTB, West Nusa Tenggara) province, Indonesia, during 2-5 August 2009, for the workshop on “Customary Institutions in Indonesia: Do They Have a Role in Fisheries and Coastal Area Management?”. The workshop was organized by the International Collective in Support of Fishworkers (ICSF), in co-operation with Indonesia’s Ministry of Marine Affairs and Fisheries (MMAF) and the Provincial Department of Fisheries and Oceans (DKP) of the Government of NTB. (PDF contains 68 pages)
Resumo:
A discussion is presented on the role of credit financing in the development of aquaculture programmes in Nigeria. The constraints militating against credit availability to aquaculture vis-a-vis the competition between aquaculture and other agricultural and industrial sectors for the allocation of available credit facilities are examined. Possible ways of enhancing preferential allocation of capital to the aquaculture industry from the various sources of credit available to the Nigerial agricultural economy are suggested