21 resultados para Robins, Margaret Dreier.
Resumo:
The Virginia Aquarium & Marine Science Center Foundation’s Stranding Response Program (VAQS) was awarded a grant in 2008 to conduct life history analysis on over 10 years of Tursiops truncatus teeth and gonad samples from stranded animals in Virginia. A major part of this collaborative grant included a workshop involving life historians from Hubbs-Sea World Research Institute (HSWRI), NOS, Texas A & M University (TAMU), and University of North Carolina Wilmington (UNCW). The workshop was held at the NOAA Center for Coastal Environmental Health & Biomolecular Research in Charleston, SC on 7-9 July 2009. The workshop convened to 1) address current practices among the groups conducting life history analysis, 2) decide on protocols to follow for the collaborative Prescott grant between VAQS and HSWRI, 3) demonstrate tissue preparation techniques and discuss shortcuts and pitfalls, 4) demonstrate data collection from prepared testes, ovaries, and teeth, and 5) discuss data analysis and prepare an outline and timeline for a future manuscript. The workshop concluded with discussions concerning the current collaborative Tursiops Life History Prescott grant award and the beginnings of a collaborative Prescott proposal with members of the Alliance of Marine Mammal Parks and Aquariums to further clarify reproductive analyses. This technical memorandum serves as a record of this workshop.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.
Resumo:
The bycatch of Australia’s northern prawn fishery (NPF) comprises 56 elasmobranch species (16 families). The impact of this fishery on the sustainability of these species has not been addressed. We obtained estimates of catch rates and the within-net survival of elasmobranchs. Carcharhinus tilstoni, C. dussumieri, Rhynchobatus djiddensis, and Himantura toshi represented 65% of the bycatch. For most species, >50% of individuals in the bycatch were immature, and some species recruited to the fishery at birth. For all species combined, 66% of individuals in the bycatch died in the trawl net. The relative sustainability of elasmobranchs caught as bycatch was examined by ranking species with respect to their susceptibility to capture and mortality due to prawn trawling and with respect to their capacity to recover once the population was depleted. The species that were least likely to be sustainable were four species of pristids, Dasyatis brevicaudata, and Himantura jenkinsii. These are bottom-associated batoids that feed on benthic organisms and are highly susceptible to capture in prawn trawls. The recovery capacity of these species was also low according to our criteria. Our results provide a valuable first step towards ensuring the sustainability of elasmobranchs that are caught as bycatch by highlighting species for management and research. The effectiveness of turtle excluder devices (TEDs) in reducing elasmobranch bycatch varied greatly among species but was generally not very effective because most of the captured species were small.