50 resultados para Risks Assessment Methods
Resumo:
Each spring horseshoe crabs (Limulus polyphemus L.) emerge from Delaware Bay to spawn and deposit their eggs on the foreshore of sandy beaches (Shuster and Botton, 1985; Smith et al., 2002a). From mid-May to early June, migratory shorebirds stopover in Delaware Bay and forage heavily on horseshoe crab eggs that have been transported up onto the beach (Botton et al., 1994; Burger et al., 1997; Tsipoura and Burger, 1999). Thus, estimating the quantity of horseshoe crab eggs in Delaware Bay beaches can be useful for monitoring spawning activity and assessing the amount of forage available to migratory shorebirds.
Resumo:
The Bangladesh Fisheries Research Institute (BFRI) sampled length frequency data, reviewed historical catch and effort data and sampled water quality to asses the status of hilsa (Tenualosa ilisha) resources. BFRI conducted a training course for BOBLME members. They also prepared awareness building materials for use in workshops for hilsa fishers.
Resumo:
The by-catch from the shrimp trawl fishery in Kalpitiya is mainly used for the production of dried fish, which provides an additional source of income for fishermen in the area. It has been observed that current handling practices along the value addition chain are responsible for the poor quality and low price of the end product. This study was aimed at identifying the shortcomings in such handling practices by fishermen and dried fish producers and assessing the quality of shrimp fishery by-catch along the processing chain in order to recommend more efficient utilization methods that will improve the quality of the end product. Fresh fish, dried fish and harbour water samples were tested for total coli forms, faecal coliforms, E. coli and Salmonella in order to assess their microbial quality: In addition, standard plate counts (SPC) of fish samples were also carried out. A survey was carried out from July-October 2006 at Kalpitiya, using a pre-tested questionnaire to collect information from individuals who have been engaged in dried fish processing. Average values obtained for freshly landed and dried fish respectively, were, SPC 9.88x10 super(5) CFU/g and 30.43x10 super(5) CFU/g, total coliforms 23.05 and 24.23 MPN/g and fecal coliforms 8.28 and 9.00 MPN/g. These values exceed the recommendations in the SL standards. A quarter of the landed fresh fish and 38% of dried fish from the producers were positive for E. coli and thus failed to show required end product quality. SPC of harbour water was 14.35x10 super(6) CFU/ml and all samples were found to be contaminated with E. coli. None of the fishermen and dried fish producers were satisfied with the quality of the end product. The reasons for poor quality as indicated by them were: limited availability of ice (75%), lack of infrastructure facilities (65%), uncertainty of markets (52%), lack of emphasis on quality (47%) and poor access to available technologies (41%). Respondents to the questionnaire also identified: unavailability of potable water, insulated boxes, good landing jetty, racks for drying fish, poor cold storage facilities and limitations in dried fish storage facilities, as further factors leading to the loss of quality in their products. Results demonstrate that improvements to the infrastructure facilities and conducting of proper awareness programmes on handling practices could lead for improvements in the quality of value added products prepared from the shrimp fishery by-catch at Kalpitiya.
Resumo:
Nowadays, risks arising from the rapid development of oil and gas industries are significantly increasing. As a result, one of the main concerns of either industrial or environmental managers is the identification and assessment of such risks in order to develop and maintain appropriate proactive measures. Oil spill from stationary sources in offshore zones is one of the accidents resulting in several adverse impacts on marine ecosystems. Considering a site's current situation and relevant requirements and standards, risk assessment process is not only capable of recognizing the probable causes of accidents but also of estimating the probability of occurrence and the severity of consequences. In this way, results of risk assessment would help managers and decision makers create and employ proper control methods. Most of the represented models for risk assessment of oil spills are achieved on the basis of accurate data bases and analysis of historical data, but unfortunately such data bases are not accessible in most of the zones, especially in developing countries, or else they are newly established and not applicable yet. This issue reveals the necessity of using Expert Systems and Fuzzy Set Theory. By using such systems it will be possible to formulize the specialty and experience of several experts and specialists who have been working in petroliferous areas for several years. On the other hand, in developing countries often the damages to environment and environmental resources are not considered as risk assessment priorities and they are approximately under-estimated. For this reason, the proposed model in this research is specially addressing the environmental risk of oil spills from stationary sources in offshore zones.
Resumo:
A new bioassay technique combining leaf disk and softagar over-layer methods was developed to investigate the allelopathic effect of deciduous leaf litters on the growth of cyanobacteria ( Microcystis aeruginosa Kütz.). Bioactive substances exuded from leaf disks caused inhibitory plaques on the agar plate containing cyanobacteria , and the rate of diffusion depended on the specific leaf disk area. Most of the leaf litters collected around reservoirs in Japan showed inhibitory activity to M. aeruginosa , with Rhus trichocarpa Miq., Quercus variabilis Blume and Mallotus japonicus (Thunb.) Muell. Arg. being the strongest among the 22 tested species.(PDF has 4 pages.)
Resumo:
A study was conducted to assess the status of ecological condition and potential human-health risks in subtidal estuarine waters throughout the North Carolina National Estuarine Research Reserve System (NERRS) (Currituck Sound, Rachel Carson, Masonboro Island, and Zeke’s Island). Field work was conducted in September 2006 and incorporated multiple indicators of ecosystem condition including measures of water quality (dissolved oxygen, salinity, temperature, pH, nutrients and chlorophyll, suspended solids), sediment quality (granulometry, organic matter content, chemical contaminant concentrations), biological condition (diversity and abundances of benthic fauna, fish contaminant levels and pathologies), and human dimensions (fish-tissue contaminant levels relative to human-health consumption limits, various aesthetic properties). A probabilistic sampling design permitted statistical estimation of the spatial extent of degraded versus non-degraded condition across these estuaries relative to specified threshold levels of the various indicators (where possible). With some exceptions, the status of these reserves appeared to be in relatively good to fair ecological condition overall, with the majority of the area (about 54%) having various water quality, sediment quality, and biological (benthic) condition indicators rated in the healthy to intermediate range of corresponding guideline thresholds. Only three stations, representing 10.5% of the area, had one or more of these indicators rated as poor/degraded in all three categories. While such a conclusion is encouraging from a coastal management perspective, it should be viewed with some caution. For example, although co-occurrences of adverse biological and abiotic environmental conditions were limited, at least one indicator of ecological condition rated in the poor/degraded range was observed over a broader area (35.5%) represented by 11 of the 30 stations sampled. In addition, the fish-tissue contaminant data were not included in these overall spatial estimates; however, the majority of samples (77% of fish that were analyzed, from 79%, of stations where fish were caught) contained inorganic arsenic above the consumption limits for human cancer risks, though most likely derived from natural sources. Similarly, aesthetic indicators are not reflected in these spatial estimates of ecological condition, though there was evidence of noxious odors in sediments at many of the stations. Such symptoms reflect a growing realization that North Carolina estuaries are under multiple pressures from a variety of natural and human influences. These data also suggest that, while the current status of overall ecological condition appears to be good to fair, long-term monitoring is warranted to track potential changes in the future. This study establishes an important baseline of overall ecological condition within NC NERRS that can be used to evaluate any such future changes and to trigger appropriate management actions in this rapidly evolving coastal environment. (PDF contains 76 pages)
Resumo:
This document describes the analytical methods used to quantify core organic chemicals in tissue and sediment collected as part of NOAA’s National Status and Trends Program (NS&T) for the years 2000-2006. Organic contaminat analytical methods used during the early years of the program are described in NOAA Technical Memoranda NOS ORCA 71 and 130 (Lauenstein and Cantillo, 1993; Lauenstein and Cantillo, 1998) for the years 1984-1992 and 1993-1996, respectively. These reports are available from our website (http://www.ccma.nos.gov) The methods detailed in this document were utilized by the Mussel Watch Project and Bioeffects Project, which are both part of the NS&T program. The Mussel Watch Project has been monitoring contaminants in bivalves and sediments since 1986 and is the longest active national contaminant monitoring program operating in U.S. costal waters. Approximately 280 Mussel Watch sites are sampled on a biennial and decadal timescale for bivalve tissue and sediment respectively. Similarly, the Bioeffects Assessment Project began in 1986 to characterize estuaries and near coastal environs. Using the sediment quality triad approach that measures; (1) levels of contaminants in sediments, (2) incidence and severity of toxicity, and (3) benthic macrofaunal conmmunities, the Bioeffects Project describes the spatial extent of sediment toxicity. Contaminant assessment is a core function of both projects. These methods, while discussed here in the context of sediment and bivalve tissue, were also used with other matricies including: fish fillet, fish liver, nepheloid layer, and suspended particulate matter. The methods described herein are for the core organic contaminants monitored in the NS&T Program and include polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), butyltins, and organochlorines that have been analyzed consistently over the past 15-20 years. Organic contaminants such as dioxins, perfluoro compounds and polybrominated biphenyl ethers (PBDEs) were analyzed periodically in special studies of the NS&T Program and will be described in another document. All of the analytical techniques described in this document were used by B&B Laboratories, Inc, an affiliate of TDI-Brook International, Inc. in College Station, Texas under contract to NOAA. The NS&T Program uses a performance-based system approach to obtain the best possible data quality and comparability, and requires laboratories to demonstrate precision, accuracy, and sensitivity to ensure results-based performance goals and measures. (PDF contains 75 pages)
Resumo:
Executive Summary: The western National Coastal Assessment (NCA-West) program of EPA, in conjunction with the NOAA National Ocean Service (NOS), conducted an assessment of the status of ecological condition of soft sediment habitats and overlying waters along the western U.S. continental shelf, between the target depths of 30 and 120 m, during June 2003. NCA-West and NOAA/NOS partnered with the West Coast states (Washington (WA), Oregon (OR), and California (CA)), and the Southern California Coastal Water Research Project (SCCWRP) Bight ’03 program to conduct the survey. A total of 257 stations were sampled from Cape Flattery, WA to the Mexican border using standard methods and indicators applied in previous coastal NCA projects. A key study feature was the incorporation of a stratified-random sampling design with stations stratified by state and National Marine Sanctuary (NMS) status. Each of the three states was represented by at least 50 random stations. There also were a total of 84 random stations located within NOAA’s five NMSs along the West Coast including the Olympic Coast NMS (OCNMS), Cordell Bank NMS (CBNMS), Gulf of Farallones NMS (GFNMS), Monterey Bay NMS (MBNMS), and Channel Islands NMS (CINMS). Collection of flatfish via hook-and-line for fish-tissue contaminant analysis was successful at 50 EMAP/NCA-West stations. Through a collaboration developed with the FRAM Division of the Northwest Fisheries Science Center, fish from an additional 63 stations in the same region and depth range were also analyzed for fish-tissue contaminants. Bottom depth throughout the region ranged from 28 m to 125 m for most stations. Two slightly deeper stations from the Southern California Bight (SCB) (131, 134 m) were included in the data set. About 44% of the survey area had sediments composed of sands (< 20% silt-clay), about 47% was composed of intermediate muddy sands (20-80% silt-clay), and about 9% was composed of muds (> 80% silt-clay). The majority of the survey area (97%) had relatively low percent total organic carbon (TOC) levels of < 2%, while a small portion (< 1%) had high TOC levels (> 5%), in a range potentially harmful to benthic fauna. Salinity of surface waters for 92% of the survey area were > 31 psu, with most stations < 31 psu associated with the Columbia River plume. Bottom salinities ranged only between 31.6 and 34.4 psu. There was virtually no difference in mean bottom salinities among states or between NMS and non-NMS stations. Temperatures of surface water (range 8.5 -19.9 °C) and bottom water (range 5.8 -14.7 °C) averaged several degrees higher in CA in comparison to WA and OR. The Δσt index of watercolumn stratification indicated that about 31% of the survey area had strong vertical stratification of the water column. The index was greatest for waters off WA and lowest for CA waters. Only about 2.6 % of the survey area had surface dissolved oxygen (DO) concentrations ≤ 4.8 mg/L, and there were no values below the lower threshold (2.3 mg/L) considered harmful to the survival and growth of marine animals. Surface DO concentrations were higher in WA and OR waters than in CA, and higher in the OC NMS than in the CA sanctuaries. An estimated 94.3% of the area had bottom-water DO concentrations ≤ 4.8 mg/L and 6.6% had concentrations ≤ 2.3 mg/L. The high prevalence of DO from 2.3 to 4.8 mg/L (85% of survey area) is believed to be associated with the upwelling of naturally low DO water across the West Coast shelf. Mean TSS and transmissivity in surface waters (excluding OR due to sample problems) were slightly higher and lower, respectively, for stations in WA than for those in CA. There was little difference in mean TSS or transmissivity between NMS and non-NMS locations. Mean transmissivity in bottom waters, though higher in comparison to surface waters, showed little difference among geographic regions or between NMS and non-NMS locations. Concentrations of nitrate + nitrite, ammonium, total dissolved inorganic nitrogen (DIN) and orthophosphate (P) in surface waters tended to be highest in CA compared to WA and OR, and higher in the CA NMS stations compared to CA non-sanctuary stations. Measurements of silicate in surface waters were limited to WA and CA (exclusive of the SCB) and showed that concentrations were similar between the two states and approximately twice as high in CA sanctuaries compared to OCNMS or nonsanctuary locations in either state. The elevated nutrient concentrations observed at CA NMS stations are consistent with the presence of strong upwelling at these sites at the time of sampling. Approximately 93% of the area had DIN/P values ≤ 16, indicative of nitrogen limitation. Mean DIN/P ratios were similar among the three states, although the mean for the OCNMS was less than half that of the CA sanctuaries or nonsanctuary locations. Concentrations of chlorophyll a in surface waters ranged from 0 to 28 μg L-1, with 50% of the area having values < 3.9 μg L-1 and 10% having values > 14.5 μg L-1. The mean concentration of chlorophyll a for CA was less than half that of WA and OR locations, and concentrations were lowest in non-sanctuary sites in CA and highest at the OCNMS. Shelf sediments throughout the survey area were relatively uncontaminated with the exception of a group of stations within the SCB. Overall, about 99% of the total survey area was rated in good condition (<5 chemicals measured above corresponding effect range low (ERL) concentrations). Only the pesticides 4,4′-DDE and total DDT exceeded corresponding effect range-median (ERM) values, all at stations in CA near Los Angeles. Ten other contaminants including seven metals (As, Cd, Cr, Cu, Hg, Ag, Zn), 2-methylnaphthalene, low molecular weight PAHs, and total PCBs exceeded corresponding ERLs. The most prevalent in terms of area were chromium (31%), arsenic (8%), 2-methylnaphthalene (6%), cadmium (5%), and mercury (4%). The chromium contamination may be related to natural background sources common to the region. The 2-methylnaphthalene exceedances were conspicuously grouped around the CINMS. The mercury exceedances were all at non-sanctuary sites in CA, particularly in the Los Angeles area. Concentrations of cadmium in fish tissues exceeded the lower end of EPA’s non-cancer, human-health-risk range at nine of 50 EMAP/NCA-West and nine of 60 FRAM groundfish-survey stations, including a total of seven NMS stations in CA and two in the OCNMS. The human-health guidelines for all other contaminants were only exceeded for total PCBs at one station located in WA near the mouth of the Columbia River. Benthic species richness was relatively high in these offshore assemblages, ranging from 19 to 190 taxa per 0.1-m2 grab and averaging 79 taxa/grab. The high species richness was reflected over large areas of the shelf and was nearly three times greater than levels observed in estuarine samples along the West Coast (e.g NCA-West estuarine mean of 26 taxa/grab). Mean species richness was highest off CA (94 taxa/grab) and lower in OR and WA (55 and 56 taxa/grab, respectively). Mean species richness was very similar between sanctuary vs. non-sanctuary stations for both the CA and OR/WA regions. Mean diversity index H′ was highest in CA (5.36) and lowest in WA (4.27). There were no major differences in mean H′ between sanctuary vs. nonsanctuary stations for both the CA and OR/WA regions. A total of 1,482 taxa (1,108 to species) and 99,135 individuals were identified region-wide. Polychaetes, crustaceans and molluscs were the dominant taxa, both by percent abundance (59%, 17%, 12% respectively) and percent species (44%, 25%, 17%, respectively). There were no major differences in the percent composition of benthic communities among states or between NMSs and corresponding non-sanctuary sites. Densities averaged 3,788 m-2, about 30% of the average density for West Coast estuaries. Mean density of benthic fauna in the present offshore survey, averaged by state, was highest in CA (4,351 m-2) and lowest in OR (2,310 m-2). Mean densities were slightly higher at NMS stations vs. non-sanctuary stations for both the CA and OR/WA regions. The 10 most abundant taxa were the polychaetes Mediomastus spp., Magelona longicornis, Spiophanes berkeleyorum, Spiophanes bombyx, Spiophanes duplex, and Prionospio jubata; the bivalve Axinopsida serricata, the ophiuroid Amphiodia urtica, the decapod Pinnixa occidentalis, and the ostracod Euphilomedes carcharodonta. Mediomastus spp. and A. serricata were the two most abundant taxa overall. Although many of these taxa have broad geographic distributions throughout the region, the same species were not ranked among the 10 most abundant taxa consistently across states. The closest similarities among states were between OR and WA. At least half of the 10 most abundant taxa in NMSs were also dominant in corresponding nonsanctuary waters. Many of the abundant benthic species have wide latitudinal distributions along the West Coast shelf, with some species ranging from southern CA into the Gulf of Alaska or even the Aleutians. Of the 39 taxa on the list of 50 most abundant taxa that could be identified to species level, 85% have been reported at least once from estuaries of CA, OR, or WA exclusive of Puget Sound. Such broad latitudinal and estuarine distributions are suggestive of wide habitat tolerances. Thirteen (1.2%) of the 1,108 identified species are nonindigenous, with another 121 species classified as cryptogenic (of uncertain origin), and 208 species unclassified with respect to potential invasiveness. Despite uncertainties of classification, the number and densities of nonindigenous species appear to be much lower on the shelf than in the estuarine ecosystems of the Pacific Coast. Spionid polychaetes and the ampharetid polychaete Anobothrus gracilis were a major component of the nonindigenous species collected on the shelf. NOAA’s five NMSs along the West Coast of the U.S. appeared to be in good ecological condition, based on the measured indicators, with no evidence of major anthropogenic impacts or unusual environmental qualities compared to nearby nonsanctuary waters. Benthic communities in sanctuaries resembled those in corresponding non-sanctuary waters, with similarly high levels of species richness and diversity and low incidence of nonindigenous species. Most oceanographic features were also similar between sanctuary and non-sanctuary locations. Exceptions (e.g., higher concentrations of some nutrients in sanctuaries along the CA coast) appeared to be attributable to natural upwelling events in the area at the time of sampling. In addition, sediments within the sanctuaries were relatively uncontaminated, with none of the samples having any measured chemical in excess of ERM values. The ERL value for chromium was exceeded in sediments at the OCNMS, but at a much lower percentage of stations (four of 30) compared to WA and OR non-sanctuary areas (31 of 70 stations). ERL values were exceeded for arsenic, cadmium, chromium, 2- methylnaphthalene, low molecular weight PAHs, total DDT, and 4,4′-DDE at multiple sites within the CINMS. However, cases where total DDT, 4,4′-DDE, and chromium exceeded the ERL values were notably less prevalent at CINMS than in non-sanctuary waters of CA. In contrast, 2-methylnaphthalene above the ERL was much more prevalent in sediments at the CINMS compared to non-sanctuary waters off the coast of CA. While there are natural background sources of PAHs from oil seeps throughout the SCB, this does not explain the higher incidence of 2-methylnaphthalene contamination around CINMS. Two stations in CINMS also had levels of TOC (> 5%) potentially harmful to benthic fauna, though none of these sites exhibited symptoms of impaired benthic condition. This study showed no major evidence of extensive biological impacts linked to measured stressors. There were only two stations, both in CA, where low numbers of benthic species, diversity, or total faunal abundance co-occurred with high sediment contamination or low DO in bottom water. Such general lack of concordance suggests that these offshore waters are currently in good condition, with the lower-end values of the various biological attributes representing parts of a normal reference range controlled by natural factors. Results of multiple linear regression, performed using full model procedures to test for effects of combined abiotic environmental factors, suggested that latitude and depth had significant influences on benthic variables regionwide. Latitude had a significant inverse influence on all three of the above benthic variables, i.e. with values increasing as latitude decreased (p< 0.01), while depth had a significant direct influence on diversity (p < 0.001) and inverse effect on density (p <0.01). None of these variables varied significantly in relation to sediment % fines (at p< 0.1), although in general there was a tendency for muddier sediments (higher % fines) to have lower species richness and diversity and higher densities than coarser sediments. Alternatively, it is possible that for some of these sites the lower values of benthic variables reflect symptoms of disturbance induced by other unmeasured stressors. The indicators in this study included measures of stressors (e.g., chemical contaminants, eutrophication) that are often associated with adverse biological impacts in shallower estuarine and inland ecosystems. However, there may be other sources of humaninduced stress in these offshore systems (e.g., bottom trawling) that pose greater risks to ambient living resources and which have not been captured. Future monitoring efforts in these offshore areas should include indicators of such alternative sources of disturbance. (137pp.) (PDF contains 167 pages)
Resumo:
Polycyclic aromatic hydrocarbons, butyltins, polychlorinated biphenyls, DDT and metabolites, other chlorinated pesticides, trace and major elements, and a number of measures of contaminant effects are quantified in bivalves and sediments collected as part of the NOAA National Status and Trends (NS&T) Program. This document contains descriptions of some of the sampling and analytical protocols used by NS&T contract laboratories from 1993 through 1996. (PDF contains 257 pages)
Resumo:
South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages)
Resumo:
From a manager’s perspective, oftentimes the publicly held concerns related to small docks and piers are not really related to the environment. They may be more related to visual impacts and aesthetic concerns, a sense of over-development of the shore, or simply change. While individuals may hold personal aesthetic values related to small docks in general or an individual structure in particular, techniques have evolved that appear to provide reproducible, predictive assessments of the visual impacts and aesthetic values of an area and how those might change with development, including an increase in numbers of small docks. These assessments may be used to develop regulatory or non-regulatory methods for the management of small docks based on state or community standards. Visual impact assessments are increasingly used in the regulatory review of proposed development—although this process is still in its infancy as regards small docks and piers. Some political jurisdictions have established visual impact or aesthetic standards as relate to docks and others are in the process of investigating how to go about such an effort. (PDF contains 42 pages)
Resumo:
This study was carried out to assess consumers' acceptance of kilishi prepared from Labeo coubie and Hyperopisus bebe occidentalis in Sokoto. The organoleptic properties (texture, odour, taste and flavour) of kilishi in its fresh form and under storage for 16 weeks were determined. The mean scores for the organoleptic assessment (6.90 and 7.19 for kilishi of Labeo and Hyperopisus respectively) showed that fish kilishi was highly acceptable. Hyperopisus kilishi recorded slightly higher mean scores for the tested organoleptic properties. The declining pattern of the sensory assessment scores with length of storage indicated that the optimum storage period under the room temperature for kilishi made from the experimental fish species in the study area was 6-8 weeks. Further research on appropriate storage methods is desirable. However, preparation of fish kilishi could be explored as alternative preservation technique to reduce fish spoilage especially during the glut in supply and to diversify fish products
Resumo:
This article reports on the success of reintroducing native crayfish (Austropotamobius pallipes) in the Sherston and Tetbury Avon, following extinction of the population from crayfish plague. The authors describe and review the survey methods that were used and identify a survey technique that was found to be the most rapid and robust for monitoring crayfish populations. Such a survey technique could be adopted as a standard method.
Resumo:
Due to changes in land use over the last century, the physical nature of many streams and rivers in the British Isles has probably changed. In some cases this change may be large for example as a result of flood defence schemes and is easily observed, whilst in other cases altered land use, farming, forestry or urbanization may have resulted in more subtle changes to river features. This working guide draws together a way of assessing habitat in any stream or river and determine sites or reaches on the assessed watercourse that may benefit from habitat improvement schemes. It will determine a method of measuring existing habitat in a broad sense, whilst referring to R and D studies currently being undertaken in this area. A method of prioritising any proposed habitat restoration work will be suggested. The limitations of fisheries improvement schemes in terms of cross functional acceptance (flood defence and conservation) will be examined along with suggested proposals for some example watercourses. The need for pre and post enhancement monitoring will be discussed as will the requirement for maintenance programs on schemes. Finally methods for determining the cost benefits of small schemes will be examined, compared to other currently used enhancement strategies. This will allow small scale revenue schemes to be used to back up pre project cost benefit analysis as required in future capital submissions.
Resumo:
Estimation of individual egg production (realized fecundity) is a key step either to understand the stock and recruit relationship or to carry out fisheries-independent assessment of spawning stock biomass using egg production methods. Many fish are highly fecund and their ovaries may weigh over a kilogram; therefore the work time can be consuming and require large quantities of toxic fixative. Recently it has been shown for Atlantic cod (Gadus morhua) that image analysis can automate fecundity determination using a power equation that links follicles per gram ovary to the mean vitellogenic follicular diameter (the autodiametric method). In this article we demonstrate the precision of the autodiametric method applied to a range of species with different spawning strategies during maturation and spawning. A new method using a solid displacement pipette to remove quantitative fecundity samples (25, 50, 100, and 200 milligram [mg]) is evaluated, as are the underlying assumptions to effectively fix and subsample the ovary. Finally, we demonstrate the interpretation of dispersed formaldehyde-fixed ovarian samples (whole mounts) to assess the presence of atretic and postovulatory follicles to replace labor intensive histology. These results can be used to estimate down regulation (production of atretic follicles) of fecundity during maturation.