91 resultados para Reproductive physiology
Resumo:
The Siberian Dace (Leuciscus leuciscus baicalensis (Dyb)is an important trade fish in Siberian waters. In the Ob basin more than 30,000 centners are produced annually. Catches of dace fluctuate significantly both between different rivers and between years in the Tomsk region. Defining the stocks of dace in the waters of the Tomsk region and explaining the fluctuations over time seems to be a very important and relevant question for the workers of the fishing industry. An answer, however, requires an accurate knowledge of the biology of dace; its reproductive, feeding and migration habits and the conditions of wintering etc. In the following we examine one of the above questions i.e. the biology of the reproduction of dace. The study was carried out in the Middle Ob in May 1951. This tranlations provides the introduction, summary and table captions only of the original article.
Resumo:
Size at first maturity, breeding periods and condition factor were determined for the small pelagic cyprinid Rastrineobola argentea (Pellegrin) in the Jinja waters of Lake Victoria in 1996-1997. Females showed a reduced size at maturity compared to ten years earlier when exploitation of the species was minimal. The males, however, have changed little. Although the species breeds throughout the year, two breeding peaks were observed during the drier months of August and December-January. Minimal breeding was observed in the rainy months of April-May and October-November. Fish from the open water station at Bugaia showed a higher proportion of breeding individuals than those from inshore areas. The mean monthly condition factor of fish from Napoleon Gulf confirmed breeding peaks obtained from examination of gonad development.
Resumo:
The reproduction of Nile tilapia, Oreochromis niloticus (L.), in the Nyanza Gulf of Lake Victoria was studied from June 1998 to May 1999. Length at maturity ranged from 28-30 cm TL for females and from 32-34 cm TL for males. Males were more abundant in all length classes longer than 36 cm TL. Relative condition factor was above unity, except in August, October and May for males, and October for females. Gonadosomatic index (GSI) was low during the post spawning period (July to October) and high during the protracted breeding period (December-June).
Resumo:
There is little doubt that both mammalian and teleost growth hormones can accelerate growth and increase food conversion efficiency in all commonly-reared species of salmonid fish. In those vertebrates that have been closely studied (predominantly mammals), the pituitary hormone somatotropin (GH or growth hormone) is a prime determinant of somatic growth. The hormone stimulates protein biosynthesis and tissue growth, enhances lipid utilization and lipid release from the adipose tissues (a protein-sparing effect) and suppresses the peripheral utilization of glucose. The present study is a prerequisite for future work on growth hormone physiology in salmonids and should contribute to our understanding of the mechanisms of growth suppression in stressed fish. Plasma growth hormone (GH) levels were measured in rainbow trout using a radioimmunoassay developed against chinook salmon growth hormone.
Resumo:
Sub-lethal toxicity tests, such as the scope-for-growth test, reveal simple relationships between measures of contaminant concentration and effect on respiratory and feeding physiology. Simple models are presented to investigate the potential impact of different mechanisms of chronic sub-lethal toxicity on these physiological processes. Since environmental quality is variable, even in unimpacted environments, toxicants may have differentially greater impacts in poor compared to higher quality environments. The models illustrate the implications of different degrees and mechanisms of toxicity in response to variability in the quality of the feeding environment, and variability in standard metabolic rate. The models suggest that the relationships between measured degrees of toxic stress, and the maintenance ration required to maintain zero scope-for-growth, may be highly nonlinear. In addition it may be possible to define critical levels of sub-lethal toxic effect above which no environment is of sufficient quality to permit prolonged survival.
Resumo:
In the early 20th century, a blue mussel species from the Mediterranean invaded the California coast and subsequently out-competed the native species south of Monterey Bay. Like other invasive species, Mytilus galloprovincialis has physiological traits that make it successful in habitats formerly occupied by the native M. trossulus, namely its adaptation to warm sea surface temperatures. This study looks at the current genotype distributions and enzymatic activities of field-acclimatized mussels within the hybrid zone where the species co-occur as well as mussels that have been acclimated for four weeks to different temperature and salinity conditions. In the field-acclimatized and laboratory-acclimated mussels, the native species exhibited significantly higher enzyme rates, which may reflect an evolutionary adaptation to compensate to low habitat temperatures. Indeed, the results of the laboratory acclimation indicate that these differences are genetically based. Whether an acclimation capacity exists may require even longer-term acclimation to different temperatures. Current findings suggest that the further spread of the invasive species is likely to be governed in large measure by the potentially counteracting effects of rising temperatures, which would favor the northerly spread of M. galloprovincialis, and increased winter precipitation, which would favor the persistence of M. trossulus. However, the success of M. galloprovincialis during acclimation to ‘dilute’ salinity (25 ppt) suggests that the invasive species can tolerate a greater salinity range than previously thought. Thus, further investigation is needed to build a comprehensive predictive model of the movement of M. galloprovincialis and the hybrid zone along the California coast.
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
Dissection can provide unique information on the physiology, biology and ecology of organisms. This document describes protocols for dissecting lionfish (Pterois volitans and P. miles). Protocols were developed to provide guidance to trained research personnel. Lionfish are native to the Indo-Pacific, but have become established in marine habitats within the Western Atlantic, Gulf of Mexico and Caribbean. The protocols described within this document were designed to help standardize handling and dissection methodologies for these species, with the goal of improving the coordination of research (e.g., Lionfish Tissue Repository; Appendix V). We focus on dissection methods, which yield data that contribute to our understanding of lionfish biology and ecology. By pairing dissection information with environmental and biotic data, researchers and managers can better understand lionfish population structure and dynamics, age and growth, reproductive biology, and food web ecology on various temporal and spatial scales.
Resumo:
The reproductive biology of blue marlin (Makaira nigricans) was assessed from 1001 fish (ranging from 121 to 275 cm in eye-to-fork length; EFL) caught by Taiwanese offshore longliners in the western Pacific Ocean from September 2000 to December 2001 and from 843 gonad samples from these fish, The overall sex ratio of the catch was approximately 1:1 dur ing the sampling period, but blue marlin are sexually dimorphic; females are larger than males. Reproductive activity (assessed by histology), a gonadosomatic index, and the distribution of oocyte diameters, indicated that spawning occurred predominantly from May to September. The estimated sizes-at-maturity (EFL50) were 179.76 ±1.01 cm (mean ±standard error) for females and 130 ±1 cm EFL for males. Blue marlin are multiple spawners and oocytes develop asynchronously. The proportion of mature females with ovaries containing postovulatory follicles (0.41) and hydrated oocytes (0.34) indicated that the blue marlin spawned once every 2–3 days on average. Batch fecundity (BF) for 26 females with the most advanced oocytes (≥1000 μm), but without postovulatory follicles, ranged from 2.11 to 13.50 million eggs (6.94 ± 0.54 million eggs). The relationships between batch fecundity (BF, in millions of eggs) and EFL and round weight (RW, kg) were BF = 3.29 × 10 –12 EFL5.31 (r2 = 0.70) and BF = 1.59 × 10–3 RW 1.73 (r2= 0.67), respectively. The parameters estimated in this study are key information for stock assessments of blue marlin in the western Pacific Ocean and will contribute to the conservation and sustainable yield of
Resumo:
Male blue crabs, Callinectes Sapidus, guard their mates before and after mating, suggesting that the conditions regulating both types of mate guarding dictate individual reproductive success. I tested the hypothesis that large male blue crabs have advantages in sexual competition using experimental manipulations, a simulation model, and field data on crabs from mid-Chesapeake Bay between 1991-1994.
Resumo:
Rex sole (Glyptocephalus zachirus) have a wide distribution throughout the North Pacific, ranging from central Baja California to the western Bering Sea. Although rex sole are an important species in the commercial trawl fisheries off the U.S. West Coast, knowledge of their reproductive biology is limited to one study off the Oregon coast where ovaries were analyzed with gross anatomical methods. This study was initiated to determine reproductive and growth parameters specific to rex sole in the Gulf of Alaska (GOA) stock. Female rex sole (n=594) ranging in total length from 166 to 552 mm were collected opportunistically around Kodiak Island, Alaska, from February 2000 to October 2001. All ovaries were analyzed by using standard histological criteria to determine the maturity stage. Year-round sampling of rex sole ovaries confirmed that rex sole are batch spawners and have a protracted spawning season in the GOA that lasts at least eight months, from October to May; the duration of the spawning season and the months of spawning activity are different from those previously estimated. Female rex sole in the GOA had an estimated length at 50% maturity (ML50) of 352 mm, which is greater than the previously estimated ML50 at southern latitudes. The maximum age of collected female rex sole was 29 years, and the estimated age at 50% maturity (MA50) in the GOA was 5.1 years. The von Bertalanffy growth model for rex sole in the GOA was significantly different from the previously estimated model for rex sole off the Oregon coast. This study indicated that there are higher growth rates for rex sole in the GOA than off the Oregon coast and that there are differences in length at maturity and similarity in age at maturity between the two regions.
Resumo:
The annual ovarian cycle, mode of maturation, age at maturity, and potential fecundity of female Rikuzen sole (Dexistes rikuzenius) from the North Pacific Ocean off the coast of Japan were studied by 1) histological examination of the gonads, 2) measurement and observation of the oocytes, and 3) by otolith aging. The results indicated that ovulation occurs from September to December and peaks between September and October. Vitellogenesis began again soon after the end of the current season. Maturity was divided into eight phases on the basis of oocyte developmental stages. Mature ovaries contained developing oocytes and postovulatory follicles but no recruiting oocytes, indicating that this species has group-synchronous ovaries and is a multiple spawner. Almost all females matured first at an age of 1+ year and spawned every year until at least age 8+ years. Potential fecundity increased exponentially with body length and the most fecund fish had 15 times as many oocytes as the least fecund fish. Potential fecundity and relative fecundity were both positively correlated with age from 1 to 6+ years, but were negatively correlated, probably because of senescence, in fish over 7 years. These results emphasize that the total productivity of a D. rikuzenius population depends not only on the biomass of females older than 1+ but also on the age structure of the population.
Resumo:
Between May and October 1990, fecundity, egg size and condition factor of Chrysichthys nigrodigitatus (Lacépède) in the Cross River, Nigeria, were studied. The fecundity (F) of this population varied from 3 046 eggs (total length, L=28.5 cm) to 28 086 eggs (L=64 cm). A mean relative fecundity of 231 eggs/cm or 13 eggs/g of fish was obtained for this population. The fecundity of this population can be estimated with the formula F=2.511 · L 2.30 or F=52.893 · W 0.78 , total length being in cm and weight (W) in g. The mean egg diameter of this population varied from 0.65 mm to 3.54 mm. Condition factor (CF) of the population varied from 0.24 to 1.34 with 0.977 as the mean; 52.8% had CF higher than the mean and 47% had CF above unity. Smaller fish in this population were in better condition than bigger ones. The egg size and condition factor obtained in this study are evidence that the Cross River population of C. nigrodigitatus can provide excellent broodstock.
Resumo:
The thorny skate (Amblyraja radiata) is a large species of skate that is endemic to the waters of the western north Atlantic in the Gulf of Maine. Because the biomass of thorny skates has recently declined below threshold levels mandated by the Sustainable Fisheries Act, commercial harvests from this region are prohibited. We have undertaken a comprehensive study to gain insight into the life history of this skate. The present study describes and characterizes the reproductive cycle of female and male thorny skates, based on monthly samples taken off the coast of New Hampshire, from May 2001 to May 2003. Gonadosomatic index (GSI), shell gland weight, follicle size, and egg case formation, were assessed for 48 female skates. In general, these reproductive parameters remained relatively constant throughout most of the year. However, transient but significant increases in shell gland weight and GSI were obser ved during certain months. Within the cohort of specimens sampled monthly throughout the year, a subset of females always had large preovulatory follicles present in their ovaries. With the exception of June and September specimens, egg cases undergoing various stages of development were observed in the uteri of specimens captured during all other months of the year. For males (n=48), histological stages III through VI (SIII−SVI) of spermatogenesis, GSI, and hepatosomatic index (HSI) were examined. Although there appeared to be monthly fluctuations in spermatogenesis, GSI, and HSI, no significant differences were found. The production and maintenance of mature spermatocysts (SVI) within the testes was observed throughout the year. These findings collectively indicate that the thorny skate is reproductively active year round.
Resumo:
The carpenter seabream (Argyrozona argyrozona) is an endemic South African sparid that comprises an important part of the handline fishery. A three-year study (1998−2000) into its reproductive biology within the Tsitsikamma National Park revealed that these fishes are serial spawning late gonochorists. The size at 50% maturity (L50) was estimated at 292 and 297 mm FL for both females and males, respectively. A likelihood ratio test revealed that there was no significant difference between male and female L50 (P>0.5). Both monthly gonadosomatic indices and macroscopically determined ovarian stages strongly indicate that A. argyrozona within the Tsitsikamma National Park spawn in the astral summer between November and April. The presence of postovulatory follicles (POFs) confirmed a six-month spawning season, and monthly proportions of early (0−6 hour old) POFs showed that spawning frequency was highest (once every 1−2 days) from December to March. Although spawning season was more highly correlated to photoperiod (r = 0.859) than temperature (r = −0.161), the daily proportion of spawning fish was strongly correlated (r= 0.93) to ambient temperature over the range 9−22oC. These results indicate that short-term upwelling events, a strong feature in the Tsitsikamma National Park during summer, may negatively affect carpenter fecundity. Both spawning frequency and duration (i.e., length of spawning season) increased with fish length. As a result of the allometric relationship between annual fecundity and fish mass a 3-kg fish was calculated to produce fivefold more eggs per kilogram of body weight than a fish of 1 kg. In addition to producing more eggs per unit of weight each year, larger fish also produce significantly larger eggs.