33 resultados para Range management
Resumo:
Informed planning and decision-making in the management of natural resources requires an ability to integrate complex interactions in ecosystems and communicate these effectively to stakeholders. This involves coping with three fundamental dilemmas. The first comes from the irregular pulse of nature. The second is the recognition that there are no strictly objective criteria for judging the well-being of an ecosystem. The third is posed by the quest for indicators with some integrative properties that may be used to analyze an ecosystem and impart the information to the relevant resource users. This paper presents some examples of indicators used to: 1) assess the status of a coral reef and, in particular, the state of its fisheries resources; 2) identify reefs that are most threatened by human activities; and 3) evaluate the likelihood of success of management interventions. These indicators are not exhaustive, but illustrate the range of options available for the management of coral reef ecosystems.
Resumo:
Informed planning and decision-making in the management of natural resources requires an ability to integrate complex interactions in ecosystems and communicate these effectively to stakeholders. This involves coping with three fundamental dilemmas. The first comes from the irregular pulse of nature. The second is the recognition that there are no strictly objective criteria for judging the “well-being” of an ecosystem. The third is posed by the quest for indicators with some integrative properties that may be used to analyze an ecosystem and impart the information to the relevant resource users. This paper presents some examples of indicators used to: 1) assess the status of a coral reef and, in particular, the state of its fisheries resources; 2) identify reefs that are most threatened by human activities; and 3) evaluate the likelihood of success of management interventions. These indicators are not exhaustive, but illustrate the range of options available for the management of coral reef ecosystems.
Resumo:
As in many tropical countries, subsistence fishers in Samoa live in discrete communities which have a high level of marine knowledge and some degree of control of adjacent waters. These factors provide an ideal basis for motivating communities to manage their marine resources. In Samoa, a community-based fisheries extension program encouraged each village community to define its key problems, discuss causes, propose solutions and take appropriate actions. Various village groups provided information which was recorded as problem/solution trees. The extension process culminated in a Village-Fisheries Management Plan which listed the resource management and conservation undertakings of the community. Undertakings range from enforcing laws banning destructive fishing methods to protecting critical marine habitats. Within the first eighteen months, the extension process commenced in 57 villages of which 40 have produced Village Fisheries Management Plans. An unexpectedly large number (32) or these villages chose to establish Marine Protected Areas, the first community-owned marin reserves in the country.
Resumo:
This paper presents an evaluation of the 15-week course on Training in Fisheries Planning and Management being offered at the University of Namibia since 1991. This course includes instruction in fisheries technology, fisheries biology, fisheries law and law of the sea, fisheries economics, fisheries sociology, environment impact assessment, planning and management, the logical framework approach to planning and computer literacy. The participats in the course have rated the various elements in a range of 2.9 to 4.7 out of a maximum of 5 points.
Resumo:
We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
Extensive mortalities of oysters, Crassostrea virginica, occurred from 1985 through 1987 in coastal waters of Georgia. Fluid thioglycolate cultures of oysters collected from 16 of 17 locations revealed infections by the apicomplexan parasite Perkinsus marinus. An ascetosporan parasite, Haplosporidium nelsoni, was also observed in histopathological examination of oysters from 4 of the locations. While the range of H. nelsoni currently is recognized as the east coast of the United States from Maine to Florida, this is the first report of the parasite in Georgia waters. This paper documents the occurrence of these two lethal parasites in oysters from coastal waters of Georgia, along with potential disease and management implications. Results of an earlier independent and previously unpublished survey are also discussed which document the presence of P. marinus in Georgia as early as 1966.
Resumo:
This is the Species management in aquatic Habitats WRc Interim 1997 document produced by the Environment Agency in 1997. This document reports progress on R&D Project 640, which aims to provide information on species of conservation value of particular relevance to the Environment Agency, in relation to its activities affecting aquatic environments. A range of stand-alone outputs is being produced, comprising Species Action Plans, practical management guidelines for Agency staff and third parties, and various research outputs to improve the knowledge base on the status and ecological requirements of priority species. The species of conservation values are: water shrew, daubenton’s bat, Kingfisher, yellow wagtail, Grey wagtail, sand martin, reed bunting, dipper, marsh warbler, great crested new, spined loach, brook lamprey, river lamprey, sea lamprey, shining rams-horn snail, little whirlpool rams-horn snail, depressed river mussel, a freshwater pea mussel, native crayfish, and triangular club-rush. The process of species selection was altered during the course of the project by the report on biodiversity by the UK Biodiversity Steering Group (1995). Whilst still including species that were not particularly endangered but were greatly influenced by the activities of the Agency, the project addressed species on the ‘short’ and ‘middle’ priority lists of the Biodiversity report, particularly those for which the Agency had specific responsibilities.
Resumo:
This is a handbook about Chalk Rivers Nature Conservation and Management from March 1999 by the Water Research Centre and commissioned by English Nature and the Environment Agency, primarly provides an objective basis for formulating conservation strategies for relevant Site of Special Scientific Interest (SSSIs) and Special Areas of Conservation (SACs). It was also seen as being applicable to chalk rivers more generally and has increasingly been regarded as important to the work of the Biodiversity Action Plan Steering Group on chalk rivers, which is led by the Environment Agency. This report contains information on characteristic wildlife communities, their habitat requirements and the ecological impact of activities that are relevant to the chalk river environment. It provides guidance on setting management objectives, options for mitigating impacts, and measures for the maintaining and enhancing the river channel, riparian and floodplain areas associated. The term `chalk river’ is used to describe watercourses dominated by groundwater discharge from chalk geology, including those that flow over a range of non-chalk surface geologies at various points along their length. England contains numerous examples of this river type, located in and downstream of areas of outcropping chalk in the south, East Anglia and up into Lincolnshire and Yorkshire. Indeed, England has the major part of the chalk river resource of Europe. A number of chalk rivers have been designated as Sites of Special Scientific Interest (SSSIs) and English Nature and Environment Agency work drawing up joint conservation strategies.
Resumo:
This handbook provides detailed information for a wide range of legal instruments relevant to fisheries and fishworkers. It covers 114 legal instruments, categorized into the following seven themes: Theme I. Human Rights, Food Security, Women and Development. Theme II. Environment and Sustainable Development. Theme III. Oceans and Fisheries Management. Theme IV. Environmental Pollution Theme V. Fishing Vessels and Safety at Sea Theme VI. Labour Theme VII. Trade The handbook also includes the working of the instruments (decision-making bodies, monitoring and implementation agencies, periodicity of meetings, rules for participation in meetings of the decision-making bodies and implementation agencies for States and non-governmental organizations), regional instrument and agencies. Apart from being a ready reckoner to the instruments, it highlights the important sections of relevance to fisheries or small-scale fisheries and fishworkers. The companion CD-ROM provides the full texts of the instruments in a searchable database. The handbook will be useful for fishworker and non-governmental organizations, and also for researchers and others interested in fisheries issues.
Resumo:
NOAA's Biogeograpy Branch, the National Park Service (NPS), US Geological Survey, and the University of the Virgin Islands (UVI) are using acoustice telemetry to quantify spatial patterns and habitat affinities of reef fishes in the US Virgin Islands (USVI). The objective of the study is to define the movements of reef fishes among habitats within and between the Virgin Islands Coral Reef Nationla Monument (VICRNM), adjacent to Virgin Islands National Park (VIIS), and USVI Territorial waters. In order to better understand species habitat utilization patterns and movement of fishes among management regimes and areas open to fishing around St. John, we deployed an array of hydroacoutstic receivers and acoustically tagged reef fishes. A total of 150 fishes, representing 18 species and 10 families were acoustically tagged along the south shore of St. John from July 2006 to June 2008. Thirty six receivers with a detection range of approximately 300m each were deployed in shallow nearshore bays and across the shelf to depths of approximately 30m. Receivers were located within reefs and adjacent to reefs in seagrass, algal beds, or sand habitats. Example results include the movement of lane snappers and blue striped grunts that demonstrated diel movement from reef habitats during daytime hours to offshore seagrass beds at night. Fish associated with reefs that did not have adjacent seagrass beds made more extensive movements than those fishes associated with reefs that had adjacent seagrass habitats. The array comprised of both nearshore and cross shelf location of receives provides information on fine to broad scale fish movement patterns across habitats and among management units to examine the strength of ecological connectivity between management areas and habitats. For more information go to: http://ccma.nos.noaa.gov/ecosystems/ coralreef/acoustic_tracking.html
Resumo:
Samples of the commercially and recreationally important West Australian dhufish (Glaucosoma hebraicum) were obtained from the lower west coast of Australia by a variety of methods. Fish <300 mm TL were caught over flat, hard substrata and low-lying limestone reefs, whereas larger fish were caught over larger limestone and coral reef formations. Maximum total lengths, weights, and ages were 981 mm, 15.3 kg, and 39 years, respectively, for females and 1120 mm, 23.2 kg, and 41 years, respectively, for males. The von Bertalanffy growth curves for females and males were significantly different. The values for L∞, k, and t0 in the von Bertalanffy growth equations were 929 mm, 0.111/year, and –0.141 years, respectively, for females, and 1025 mm, 0.111/year, and –0.052 years, respectively, for males. Preliminary estimates of total mortality indicated that G. hebraicum is now subjected to a level of fishing pressure that must be of concern to fishery managers. Glaucosoma hebraicum, which spawns between November and April and predominantly between December and March, breeds at a wide range of depths and is a multiple spawner. The L50’s for females and males at first maturity, i.e. 301 and 320 mm, respectively, were attained by about the end of the third year of life and are well below the minimum legal length (MLL) of 500 mm. Because females and males did not reach the MLL until the end of their seventh and sixth years of life, respectively, they would have had, on average, the opportunity of spawning during four and three spawning seasons, respectively, before they reached the MLL. However, because G. hebraicum caught in water depths >40 m typically die upon release, a MLL is of limited use for conserving this species. Alternative approaches, such as restricting fishing activity in highly fished areas, reducing daily bag limits for recreational fishermen, introducing quotas or revising specific details of certain commercial hand-line licences (or doing both) are more likely to provide effective conservation measures.
Resumo:
The study was conducted on the present status of HACCP based quality management system of golda, Macrobrachium rosenbergii farms in Fulpur region of Mymensingh. Information was collected on general condition of farms, culture systems and post-harvest quality management. In almost all farms, there is no or inadequate infrastructure facilities such as, road access, electric supply, telecommunications, ice, feed storage facility, vehicle for golda transportation, washing and toilet facilities. The problems associated with sanitation and hygiene was: widespread use of cow dung, poultry manure and construction of open toilet within the vicinity of prawn culture pond. Different grades of commercially available and locally prepared feeds were used for golda culture in the pond. Golda post-larvae (PL) of 40-50 days old were stocked with carp species. The price of golda PL ranged from Tk. 1.00 to Tk. 1.25/piece. The pond size varied from 50 decimal (0.2 ha) to 2.5 acre (1.0 ha) with an average depth of 2-2.5 m. The culture period of golda varied from April-May to November-December and survival rate ranged between 75 and 80%. Production of golda varied from 250-500 kg/acre (625-1,250 kg/ha). Harvested golda were transported to city market within 4 h. Two size grading were generally followed during pricing, e.g. Tk. 500 to 550/kg for >100 g size and Tk. 300/kg for <100 g size. The cost-benefit ratio was found to remain around 1:1.25 depending on availability of PL. Water quality parameters such as, water temperature, pH, dissolved oxygen, total alkalinity and chlorophyll a in five golda farms in Fulpur region were monitored. Water temperature ranged from 29°C to 33°C, dissolved oxygen from 2.28 to 4.13 mg/l, pH between 6.65 and 7.94, alkalinity from 44 to 70 mg/l and chlorophyll a concentration from 61.88 to 102.34 µg/l in the five investigated ponds. The Aerobic Plate Count (APC) of the water sample was within the range of 2.0x10^6 - 2.96x10^7 CFU/ml and of soil samples within the range of 6.9x10^6 - 7.73x10^6 CFU/g. Streptococcus sp., Bacillus sp., Escherichia coli, Staphylococcus sp., Pseudomonas sp. and Salmonella sp. were isolated from pond water and sediment. Different feed samples used for golda was analyzed for proximate composition. Moisture content ranged around 14.14-21.22%, crude protein 20.55-44.1%, lipid 4.67-12.54% and ash 9.7-27.69%. The TVB-N values and peroxide values of feeds used as starter, grower and fish meal were found within the acceptable ranges and samples were free from pathogenic organisms. A training was organized for the golda farmers on HACCP, water quality and post-harvest quality management of prawn.
Resumo:
The Yellowfin tuna was caught more than all other species in the southern waters of Iran (24000 tons in 1998). In order to come up with the responsible fishing pattern, there was a need to identify some of the biological characteristics and population dynamic parameters. This thesis was the first which covered the whole Yellowfin tuna distribution in the Oman Sea, included the fishing grounds of Berris, Ramin, Chabahar, Pozm and Jask. The data during 1998-99 from different fishing grounds were polled. Based on the exponential relationship between length and weight in the size range 38-173 Cm, the relationship (W=aL^ b) was calculated as W=0.000012L ^ 3.0831). The mean fork length,head length,girth and weight were calculated respectively 84.15 Cm, 23 Cm, 53 Cm, and 11828 g. Length infinity was estimated 189 Cm with growth parameters of 0.42 per year. Growth performance index was 4.18 which was in agreement with the findngs of the other studies in the Indian and Pacific Oceans. The mortality parameters and exploitation rate were estimated as below: Z = 1.75-1.85 M=0.6 F=1.25 E=0.68 Occurence of empty stomach was high (60%) in the speciemens obtained from the Oman Sea. Purpleback flying squid (Sthenoteuthis oualaniensis) was the most dominant prey species observed in the study (57% in females and 60% in males), occurrence of teleost fishes were found to be the second (38% in males and 42% in females). Crabs also were identified in the specimens(1-2%). The study on sex ratio indicated that males were predominant at all sizes above 120 Cm fork length. 50.82% of specimens were males and 49.18% females. The monthly gonadosomatic index was deriven higher values during January to June which could be indicated as spawning period.
Resumo:
Water hyacinth is a free-floating waterweed native to the Amazon River Basin in South America. In its native range, water hyacinth is not an environmental problem, although the weed is one of the most invasive alien plants in freshwater environments. Water hyacinth has the potential to become invasive through fast vegetative reproduction and rapid growth to accumulate huge biomass and extensive cover in freshwater environments. Over the last 150 years water hyacinth has invaded most countries in the tropics and sub-tropics, introduced by man, mainly for ornamental purposes. Such introductions led to the infestation of most freshwater-ways in the southern United States of America, parts of Australia, the pacific islands, and most countries in Asia and Africa. The extensive tightly packed mats of water hyacinth are often associated with devastating socio-economic and environmental impacts. Invasion by the weed has, therefore, often generated urgent costly problems associated with the weed biomass and its management. A classic example of such problems was triggered by the invasion and proliferation of water hyacinth in the Lake Victoria Basin during the 1980s (Freilink 1989, Taylor 1993, Twongo et al., 1995). The weed infestation marked the beginning of a decade of intensive and systematic campaign by the three riparian states (Kenya, Tanzania and Uganda) to bring weed proliferation under control. The discussions in this Chapter span over ten years of dealing with the challenges paused by the imperative to manage infestations of water hyacinth in the Lake Victoria Basin. The challenges included the need to understand the dynamics of water hyacinth infestation; its distribution, proliferation and impact modalities; and the development and implementation of appropriate weed control strategies and options. Most specific examples were taken from the Ugandan experience (NARO, 2002).