18 resultados para PRECIPITATION
Resumo:
The western United States is characterized by heterogeneous patterns of seasonal precipitation regimes due to the hierarchy of climatic controls that operate at different spatial scales. A climatology of intermonthly precipitation changes, using data from more than 4,000 stations including high-elevation sites, illustrate how different climatic controls explain the spatial distribution of the seasonal precipitation maximum. These results indicate that smaller-scale climatic controls must be considered along with larger-scale ones to explain patterns of spatial climate heterogeneity over mountainous areas. The results also offer important implications for scholars interested in assessing spatial climatic variations of the western United States at different timescales.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): We have analyzed streamflow variations recorded at 15 USGS gauging stations in California during the past 90 years or so. The anomalies (departures from the 1960-1990 mean discharge) of streamflow on annual-to-decadal time scales are strongly correlated with precipitation anomalies in each drainage basin. ... Although causes of the decadal climate (precipitation) variability are not known with certainty, the use of streamflow records may help us understand the relative strengths of moisture sources and shift of the jet stream in atmospheric circulation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Torrey pine (Pinus torreyana Parry ex Carr.) has one of the most limited geographical ranges and population size in the Pinus genus; it is present only on Santa Rosa Island and on the coast between San Diego and Del Mar, where our research was conducted. A 168-year chronology (1827-1994) was developed using 28 increment cores extracted from 15 living and 2 dead stranding trees at Torrey Pines State Reserve, San Diego, California. ... The spatial correlation with western North America winter and spring precipitation, as well as with published tree-ring chronologies, indicates a connection with the American Southwest. Global correlation maps with winter sea level pressure and sea surface temperature are consistent with the hypothesis that San Diego precipitation is affected by a southerly displaced North Pacific storm track and by warmer water farther south, both leading to higher transport of lower latitude moisture.