33 resultados para PARASITIC WASP
Resumo:
The general decline of the endangered freshwater pearl mussel Margaritifera margaritifera (L.) throughout its holarctic range is well documented. Scotland is considered to be a stronghold of margaritifera, containing approximately half of the world's known remaining viable populations. However, even here the majority of populations have declined and many have disappeared completely. This article provides an overview of the freshwater pearl mussel life-cycle and the life-cycle of salmonids which are the host fish during the freshwater mussels short parasitic larval phase. The authors highlight the potential implications of the decline of salmonids for freshwater populations in Scotland.
Resumo:
Parasitic and infectious diseases of fish, of wide distribution in fish-rearing ponds, retard to a significant extent the development of fish culture in the Ukraine. One of the diseases of fish attracting attention in connection with the general distribution of its causative agent, the fungus Saprolegnia parasitica Coker, in water-bodies of various types, appears to be dermatomycosis. The aim of this investigation is to study the conditions favouring the development of S. parasitica. Among the studied factors were water temperature and oxygen content.
Resumo:
The study of enzymatic activity is of great importance in the immunology of fungi. Indeed, knowledge of biological activity of antigenic structures is important for the elucidation of host-parasite relations as well as in the search for a taxonomic factor permitting differential diagnoses. The authors used Saprolegnia cultures to analyse soluble antigenic fractions arising from the mycelium of cultures of 4 species of Saprolegnia, which are found most frequently in the parasitic state on fish: S. parasitica, S. ferax, S. delica, S. diclina. The authors conclude that in the study of saprolegniasis, the enzymatic approach affords new elements for the examination of the etiology of fungi as well as an element of gravity concerning the biochemical modifications necessary to the change of saprophytism to parasitism.
Resumo:
There is, in nature, as well as in the aquarium, a parasitic disease known as 'mousse' and which attacks predominantly fish. It is caused by Phycomycete fungi, genus Saprolegnia. The fungus causes external lesions and covers the fish with a thick white layer from whence comes the name 'mousse', commonly attributed to the disease, for which the scientific name is Saprolegnia. This article provides an overview of Saprolegnia infections on fish in nature and aquaria and then discusses symptomology of Saprolegnia in the mirror caro and t roach in more detail.
Resumo:
The life cycle of the river lamprey, L. fluviatilis, is reviewed. The larval lamprey, or ammocoete, is a blind, filter-feeding animal, which normally lies concealed in the silt deposits of streams and rivers. After a period of 3-5 years in fresh water the ammocoete undergoes a metamorphosis in the summer months into a sexually immature, non-feeding stage known as the macrophthalia, which is active. This stage migrates downstream in late winter. It adopts a parasitic existence, in intertidal areas. After 18 months it returns to spawn in fresh water, after a final freshwater stage lasting up to 9 months. The river lamprey dies within a few days after the spawning period of 3-4 weeks, and none survive to spawn the following year.
Resumo:
The majority of water mites found in freshwater belong to the Hydrachnellae, a group which exhibit striking morphological diversity. This paper reviews work on the structure, morphology and taxonomy. The role of water mites as predators, their life history and their parasitic associations with aquatic insect or freshwater mollusc hosts is discussed along with the distribution of water mites in the British Isles.
Resumo:
The marine invertebrates of North America received little attention before the arrival of Louis Agassiz in 1846. Agassiz and his students, particularly Addison E. Verrill and Richard Rathbun, and Agassiz's colleague Spencer F. Baird, provided the concept and stimulus for expanded investigations. Baird's U.S. Commission of Fish and Fisheries (1871) provided a principal means, especially through the U.S. Fisheries Steamer Albatross (1882). Rathbun participated in the first and third Albatrossscientific cruises in 1883-84 and published the fist accounts of Albatross parasitic copepods. The first report of Albatross planktonic copepods was published in 1895 by Wilhelm Giesbrecht of the Naples Zoological Station. Other collections were sent to the Norwegian Georg Ossian Sars. The American Charles Branch Wilson eventually added planktonic copepods to his extensive published works on the parasitic copepods from the Albatross. The Albatross copepods from San Francisco Bay were reported upon by Calvin Olin Esterly in 1924. Henry Bryant Bigelow accompanied the last scientific cruise of the Albatross in 1920. Bigelow incorporated the 1920 copepods into his definitive study of the plankton of the Gulf of Maine. The late Otohiko Tanaka, in 1969, published two reviews of Albatross copepods. Albatross copepods will long be worked and reworked. This great ship and her shipmates were mutually inspiring, and they inspire us still.
Resumo:
Haddock, Melanogrammus aeglefinus, is a principal commercial species distributed throughout the northwest Atlantic Ocean, with major aggregations occurring on Georges Bank and on the Scotian Shelf. This review examines all available information on stock structure of haddock to evaluate the suitability of current stock units and to investigate areas that require further research. Combined information from tag-recapture, demographic, recruitment, meristic, parasitic, and genetic studies provide evidence for the identification of haddock stocks, with major population divisions occurring between New England, Nova Scotia, and Newfoundland waters. Within each of these major divisions a number of discrete stocks appear to exist, although uncertainty remains in the amount of separation found within each region. Research utilizing more recent stock identification techniques should refine and improve our understanding of haddock stock structure in the northwest Atlantic.
Resumo:
Four recognized species of menhaden, Brevoortia spp., occur in North American marine waters: Atlantic menhaden, B. tyrannus; Gulf menhaden, B. patronus; yellowfin menhaden. B. smithi; and finescale menhaden, B. gunteri. Three of the menhaden species are known to form two hybrid types. Members of the genus range from coastal waters of Veracruz, Mex., to Nova Scotia, Can. Atlantic and Gulf menhaden are extremely abundant within their respective ranges and support extensive purse-seine reduction (to fish meal and oil) fisheries. All menhaden species are estuarine dependent through late larval and juvenile stages. Depending on species and location within the range, spawning may occur within bays and sounds to a substantial distance offshore. Menhaden are considered to be filter-feeding, planktivorous omnivores as juveniles and adults. Menhaden eggs, immature developmental stages, and adults are potential prey for a large and diverse number of predators. North American menhadens, including two hybrids, are hosts for the parasitic isopod, Olencira praegustator, and the parasitic copepod, Lemaeenicus radiatus. Although the data are quite variable, a dome-shaped Ricker function is frequently used to describe the spawner-recruitment relationship for Atlantic and Gulf menhaden. Each of these species is treated as a single stock with respect to exploitation by the purse-seine reduction fishery. Estimates of instantaneous natural (other) mortality rates are O.45 for Atlantic menhaden and 1.1 for Gulf menhaden.
Resumo:
The study here reported is a survey of the most common non-parasitic nematode families of Chesapeake Bay, Maryland, with descriptions and figures, so that ecological workers and students of invertebrate zoology may be encouraged not to pass over this highly interesting and abundant invertebrate phylum. This survey is not a complete account of the free-living nematode population of the Bay, however, since only the middle section of the Bay was sampled and since the collections were not made systematically throughout the year. The physical and chemical factors of Chesapeake Bay may be found in several publications of the Chesapeake Biological Laboratory, Solomons Island, Maryland, and in the records of the Chesapeake Bay Institute, Annapolis, Maryland.
Resumo:
This is the second supplement to "A guide to the freshwater fauna of Ceylon" by A. S. Mendis and C. H. Fernando, Bull. Fish. Res. Stn., Ceylon, No. 12, 160 pp. (1962). In the present supplement additions and corrections are made in the sections on Protozoa, Annelida and Arthropoda. The sections on Platyhelrainthes and Nematoda have been expanded and the Acanthocephala added. A list of species recorded and the hosts of the parasitic forms are included. In the "Guide", the insects with only larval stages in aquatic habitats were mentioned only briefly and no species lists were included. In this supplement this gap is largely filled by added notes and inclusion of species lists of all these groups except the Neuroptera, Lepidoptera, Tabanidae, Syrphidae and Stratiomyidae. The orders Neuroptera and Lepidoptera have relatively few members in freshwater habitats and the families Tabanidae, Syrphidae and Stratiomyidae have forms with larvae in aquatic habitats and also in moist places which are not true freshwater habitats. At this time, it is not possible to separate those forms living in freshwater habitats. Short diagnoses of six additional families are given, namely, the ixidae, Psychodidae, Tabanidae Stratiomyidae, Rhagionidae and Sciomyzidae. Keys are provided for the Odonata and Ephermeroptera larvae down to the family level. An attempt has been made to make the references more comprehensive. Works dealing specifically with the Ceylonese fauna are of course included, but in addition those which are of use in diagnosis of local genera and species have been cited.
Resumo:
This report comprises a summary of parasitic copepods from fishes in Ceylon, as isolated from the branchial material of fishes belonging to previous collections. Seven copepod species are described in detail, as well as one species of Branchiura and one species of Isopoda. Caution is advocated to avoid further introductions via parasite-infested fishes, since only four of the above species are endemic.
Resumo:
An incidence of bopyrid isopod infestation was observed in giant freshwater prawn, Macrobrachium rosenbergii (de Man) juveniles (40-60 mm/0.9-1.5 g) in a scampi culture farm in East Godavari district of Andhra Pradesh. The presence of parasite was observed by conspicuous boil like swelling of the branchial chamber where the parasite was found lodged on the gills. The infested gill was highly compressed and necrosed. Only one branchial chamber was infested by the parasite while the other gill was normal. The infested prawns were thin and emaciated and showed retarded growth. The parasite was identified as Probopyrus bithynis (Richardson, 1904) which caused inhibition of ventilation due to its permanent lodging in the branchial chamber and impaired the gaseous exchange by gills. It was also observed that this parasite caused parasitic castration in the infested prawns.
Resumo:
Of the total 240 Pangasius hypothalamus (5 - 8.7cm) fry examined during September' O1 to February'02, 80 (33.33%) were found to be infested with one or more ecroparasites irrespective of genera or groups. Seven parasitic groups were identified with the highest average prevalence of Trichodinids (55%) followed by Dacrylogyrus spp. ( 42%), Episrylis spp. (8%), Apiosoma spp. (7%) Argulus spp. (5%), Gyrodacrylus spp. (4%) and Piscicola spp. (2%) the lowest prevalent group irrespective of months. Trichodinid and Dacrylogyms spp. were recorded to be the dominating parasitic groups among the seven both in terms of monthly prevalence and severity of infestation throughout the period of investigation. The highest prevalence (60%) of ectoparasite was recorded in December and the lowest (10%) in February irrespective of groups.
Resumo:
The caryophyllaeid cestode Lytocestoides fossilis infects the freshwater catfish Heteropneustes fossilis. The study was conducted for two consecutive years (2004-06) to record the bio-statistical data of the parasite. The incidence, intensity, density and index of infection of the parasite have been recorded. The infection was more during June to September, moderate during February to May and low during October to January. The parasite brought about severe histopathological changes in the stomach of infected fish. The changes observed in the stomach of fish included structural damage of the villi, inflammation, and fibrosis associated with hyperplasia and metaplasia. The hypertrophy of mucous layer led to vacuolation and necrosis. Histochemical changes were noticed with enhanced carbohydrate, protein and lipid contents. The enhanced substrate content in the infected organ might be due to the disfunctioning of the digestive tract, which results in the accumulation of various metabolites. Mucus secretion was triggered as a protective interaction against parasitic invasion. The parasitic infection affects the general metabolic state of the host and as the result, the fish becomes sluggish and moribund.