20 resultados para Osmotic-stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of oxygen consumption by Perna viridis pre-exposed to copper and zinc was studied. Those test individuals pre-exposed to various zinc concentrations showed variability in oxygen consumption irrespective of concentrations and pre-exposure period. While those animals pre-exposed to various copper concentrations registered decrease in oxygen consumption at concentrations above 0.06 p.p.m. copper, pre-exposure to concentrations below 0.02 p.p.m. copper did not result in any clear cut change in the rate of oxygen consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was conducted to assay the effects of different levels of dietary vitamins C and E on growth indices and survival and resistance against thermal stress of rainbow trout (Oncorhynchus mykiss) in pond culture of Marzan abad from December 2011 to February 2011. Seven diets were supplemented. 300 fish with the average weight of 17 g were introduced to ponds for 60 days. The results showed that the highest and the lowest weight gain were in fish fed with diet containing 50 mg/kg vitamin C and E and 0 mg/kg vitamin C and E(control) , respectively. The highest and the lowest Feed Conversion Ratio (FCR) were measured in control and diet 50 mg/kg vitamin C and E. There is a significant difference in their treatments (P<0.05). Also, the lowest and highest amount of Weight Gain (WG) were observed in (E) treatment with 165.04% and 117.5% in control, the highest and lowest Specific Growth Rate (SGR), Protein Efficiency Ratio (PER), Condition Factor (CF) was found in control and treatment 50 mg/kg vitamin C and E, respectively(P<0.05). In conclusion vitamin C and E have an important role in enhancement of growth performance and feed efficiency of rainbow trout.The highest red blood cells were found in combined treatments and which the vitamin C was added.The highest RBC were found in E treatment(1.1×104 /mm3) and the lowest one in control (P˂0.05). Counting white blood cells also confirmed highest quantity in combined treatments with (69.83×104/mm3) and the lowest one (28.83×104 /mm3) in control. In conclusion these vitamins have a significant role in blood characteristics. Meantime, the resistance against termal stress was measured at the end of 60 days by facing fishes into 5 centigrade warmer water so consentration of Cortisol and Glucose measured for this reason.The lowest cortisol amount was measured in E treatment with 188.74 ng/ml and the highest was found in control(P<0.05). There was a significant difference in blood glucose consentration of fishes in F treatment with (78.66 mg/dl) and control with 136 mg/dl as a highest one(P<0.05).