32 resultados para Orchid cultivation
Resumo:
In a survey conducted to find out the status of integrated rice-cum-fish culture in Niger State, Nigeria, 0.37 ha of Fadama wetlands was utilized for rice-cum-fish culture and at experimental stage. In the case study of this rice-cum-fish model, the Nile Tilapia (Oreochromis niloticus) was involved. The result was that 1,4720 kg/ha/yr could be produced using chick manure application under rice-cum-fish culture model. The available records reveal that 233,079 ha out of 495,000 ha of estimated Fadama in Niger State was used for rice cultivation in 1997. If 233,079 ha were to be used for integrated rice-cum fish culture, it is estimated that 343,092 mt of fish (Oreochromis niloticus) could be produced per year. The fish demand in Niger State in 2002 was 50,000 mt. The NPK application under rice-cum-fish production gave the best rice production estimated at 43,968.0 kg/ha/yr. The percentage increase in rice yield as well as increase in net income due to introduction of fish was 10.1 % and 54.4% respectively. The culture system is therefore recommended for adoption towards greater participation in aquaculture development by the farmers
Resumo:
This paper reviews the production trials of rice-cum-fish culture. Rice and various fish species using rotation and concurrent methods of cultivation are used. The farming system is mostly practiced and researched in to in Southeast Asian countries. It addresses the problems of high external inputs, sustainable aquaculture, poverty and nutrition in the rural population, insect pests, use of insecticides, weeds control and under-utilization of agricultural lands. The production trials yields are summarized and a summary of annual income per hectare from rice and fish have been given. The yield however depends to a large extent on the species stocked, culture period, fertility of the soil and water, degree of supplemental feeding and culturing methods. The production results are discussed. Niger state is blessed with abundant wetlands/rice fields suitable for the practice. However, ecological differences from country to country and region to region, research and development trials are necessary to ensure a successful adoption of the technology to farmers in the State
Resumo:
Shellfish bed closures along the North Carolina coast have increased over the years seemingly concurrent with increases in population (Mallin 2000). More and faster flowing storm water has come to mean more bacteria, and fecal indicator bacterial (FIB) standards for shellfish harvesting are often exceeded when no source of contamination is readily apparent (Kator and Rhodes, 1994). Could management reduce bacterial loads if the source of the bacteria where known? Several potentially useful methods for differentiating human versus animal pollution sources have emerged including Ribotyping and Multiple Antibiotic Resistance (MAR) (US EPA, 2005). Total Maximum Daily Load (TMDL) studies on bacterial sources have been conducted for streams in NC mountain and Piedmont areas (U.S. EPA, 1991 and 2005) and are likely to be mandated for coastal waters. TMDL analysis estimates allowable pollutant loads and allocates them to known sources so management actions may be taken to restore water to its intended uses (U.S. EPA, 1991 and 2005). This project sought first to quantify and compare fecal contamination levels for three different types of land use on the coast, and second, to apply MAR and ribotyping techniques and assess their effectiveness for indentifying bacterial sources. Third, results from these studies would be applied to one watershed to develop a case study coastal TMDL. All three watershed study areas are within Carteret County, North Carolina. Jumping Run Creek and Pettiford Creek are within the White Oak River Basin management unit whereas the South River falls within the Neuse River Basin. Jumping Run Creek watershed encompasses approximately 320 ha. Its watershed was a dense, coastal pocosin on sandy, relic dune ridges, but current land uses are primarily medium density residential. Pettiford Creek is in the Croatan National Forest, is 1133 ha. and is basically undeveloped. The third study area is on Open Grounds Farm in the South River watershed. Half of the 630 ha. watershed is under cultivation with most under active water control (flashboard risers). The remaining portion is forested silviculture.(PDF contains 4 pages)
Resumo:
Duckweed is the smallest of all flowering plants and the plant double its mass in less than 2 days under ideal environmental conditions. Dry matter of duckweed contains between 35-45% crude protein. Moreover, the introduction of the plant to feed mill industries as a source of protein and binder supplement for pelleted fish feeds makes it of economic value. Duckweed has great potential if cultivation is encouraged in Nigeria, as this will also provide a good employment opportunity for larger percentage of youth in the riparian communities. The thrust of this paper was to explore the possibility of introducing duckweed farming to the rural populace for alternative sources of income most especially, the fisher folks and other interested farmers
Resumo:
By the industrial cultivation of blue-green algae, there very much appears the important question about their carbon nutrition. Spirulina grows within the range of pH value of medium of 8.5 - 11.0. In this range of pH value in the culture medium CO2 is present in the form of bicarbonate and carbonate, which serves as principal source of carbon for the present type of algae. There is little information yet about the influence of the pH of the medium, and the form of carbon components of the medium, on the rate-increase of Spirulina. Investigations were conducted into the influence of some pH values of medium on the rate-increase of the alga Spirulina platensis.
Resumo:
It has been estimated that in England and Wales fresh water covers some 340 square miles of which about one quarter is inhabited mainly by salmon and trout; in Scotland the lakes cover an area of 340 square miles. The principal object of this publication is to make available in handy form some of the methods, especially those involving the use of manures, by which crops of fish from water can be increased. The cultivation of water which this implies may be compared directly to the cultivation of farm land: the conditions for growth are made as favourable as possible, the seed is sown in the form of young fish, and after one or perhaps two growing seasons the crop is harvested. There are however many waters about the country where marketable fish are already available and can be removed without prejudice to, and indeed to the advantage of, sporting fisheries. In such cases it is necessary only to remove the fish and to rely on the natural processes of reproduction of those which are left to repopulate the water. Farming waters in the true sense is the concern of the greater part of this publication; the removal of crops of otherwise unwanted fish is considered in the last two sections on perch trapping and eel fisheries.
Resumo:
In the State of Assam, floodplains cover 2.6 million ha of area that is traditionally rice growing. The ecosystem in the rice-growing areas has undergone major changes as a result of various developmental activities and adoption of modern farming technology. Rice fields were once the major source of fish for the rural farmers. There has been a sharp decline in fish population in rice field leading to a chronic shortage of fish in the State and a deterioration of the rice ecosystem. This paper describes two on-farm experiments for integrating rice cultivation and fish production with the intent of contributing to the understanding of how raising fish can improve rice yields, riceecosystems and farm incomes.
Resumo:
The integration of paddy cultivation with prawn/fish culture can become a viable alternative to effectively utilize the vast area of derelict polders (embanked coastal flood plains) in Kuttanad, India. Nearly 55 000 ha of wetlands in Kuttanad are available for paddy cultivation year-round. Around 5 000 ha of the polders are utilized for Macrobrachium rosenbergii culture as a follow-up crop. Of the total area, about 250 ha of fallow polders are utilized for monoculture of M. rosenbergii from March to October, while in 4 750 ha polyculture with Indian and exotic carps is practiced from November to June. Stocking density is 15 000 to 60 000/ha for monoculture of M. rosenbergii, while in polyculture with carps, it is 5 000 to 20 000/ha of prawn and 5 000 to 10 000/ha of fish. Production from monoculture varies from 95 to 1 297 kg/ha whereas production from polyculture systems it is 70 to 500 kg/ha of prawn and 200 - 1 200 kg/ha of fish. Profits range from Rs. 5 000 to 20 000/ha. An evaluation is made of how the present polders of Kuttanad are best utilized for culture of M. rosenbergii following different systems of integrated farming and how the integration is useful in the aquaculture sustainability of Kuttanad, a tropical wetland ecosystem.
Resumo:
This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.
Resumo:
Freshwater animals are of importance in the economy of most countries. In recent years the scientific cultivation of freshwater fish for food has been spreading throughout South-East Asia and the Far-East. New and useful species of fish have been introduced into many countries including Ceylon where the older system of trapping any variety of fish that is available is being replaced by scientifically planned management with a view to increasing the production of good quality fish. Considerable quantities of food mainly in the form of fish are being taken from our freshwaters, providing a cheap source of much needed protein in the diet of the villager. More recently large quantities of freshwater fish are being consumed by the urban population.
Resumo:
The results of experiments conducted on a pond dyke (655m²) in the Wastewater Aquaculture Division of the Central Institute of Freshwater Aquaculture, Rahara, during 1992-93 for maximising production through optimum utilisation of resources are communicated. Round the year intensive cultivation of okra (Abelmoschus esculentus), amaranth (Amaranthus gangeticus and A. viridus), water-bind weed (Ipomea aquatica), Indian spinach (Basella rubra), radish (Raphanus sativum), amaranth (Amaranthus viridis), cauliflower (Brassica oleracia var. votrytis), cabbage (Brassica oleracia var. capitota) and papaya (Carica papaya) was undertaken using the treated sewage water from fish ponds for irrigation. The pond dyke yielded 5,626.5 kg vegetable which worked out to 85.9 tons per ha per year. Multiple cropping with these vegetables excluding papaya on a 460 m² dyke recorded a production of 4,926.5 kg at the rate of 107.1t per ha/yr. An improved yearly net return of about 35% over investment could be achieved through the selection of highly productive and pest resistant vegetable crops of longer duration for integration into the system. Introduction of this type of integrated farming would enhance the overall productivity and returns from farming.
Resumo:
The present study deals with the chemical, algal and faunal characteristics of the stream system at Horton Plains, the highest plains in Ceylon (altitude 2'225 m). The cultivation of seed potatoes and subsequent use of fertilizers have caused extensive silting and severe eutrophication of the stream systems. Since there are no indigenous fish, the trout Salmo gairdnerii has been introduced and it is the only fish found in these streams. The commonest fauna in the streams are crabs (Paratelphusa sp.), shrimps (Caridimr sp.), Simulium sp. and Chironomus sp. Their increase in number is probably correlated with increase in organic and detritus matter. The most important food items of the trout are the crabs living abundantly in the stream, insect larvae and terrestrial insects were also commonly found in the guts. Records of stocking and taking of trout in the Horton plains streams have shown that now less trout are taken relatively to the numbers stocked. This decrease may be possibly due to the eutrophication of the stream and also due to the possible use of pollutants in connection with the cultivation of seed potatoes.
Resumo:
The evolutionary process of converting low-lying paddy fields into fish farms and its impact on agrarian communities in some selected areas of Mymensingh district were studied. This study was conducted through participatory rural appraisal (PRA) covering 12 villages from each of selected upazillas viz. Fulpur and Haluaghat of Mymensing [sic] district. A total of 12 PRA sessions were conducted where 90 farmers participated during 29 July to 26 August 2004. It is seen that the use of low-lying paddy fields was mostly confined to Broadcast Aman (B. Aman) rice production until 1960s. With the introduction of modern rice farming technology, the farmers started to produce Boro rice in Rabi season and B. Aman rice in Kharif season. With the passage of time, aquaculture technologies have been evolved and the farmers realized that fish farming is more profitable than rice cultivation, and then they started to utilize their paddy fields for alternate rice-fish farming and rice-cum-fish farming. Now a days, aquaculture based crop production system is in practice in more than 25% of the low-lying paddy fields. Conversion of rice fields in to fish ponds has brought up a change in the livelihood patterns of the rural farmers. The areas where the farmers involved themselves in the new production systems were fingerling collection, transportation and marketing of fry and fingerlings. During 1960s to 1970s, a few people used to culture fish in the permanent ponds for their own consumption, the species produced were rohu, catla, mrigal, ghainna, long whiskered catfish, freshwater shark (boal), snake head (shol) etc. Small fishes like climbing perch, stinging catfish, walking catfish, barb, minnows etc. were available in the rice fields during monsoon season. In 1980s to mid 1990s, some rice fields were converted into fish ponds and the people started to produce fish for commercial purposes. When rice-fish farming became profitable, a large number of people started converting their rice fields in to rice-fish culture ponds. Culture of some exotic fishes like silver carp, tilapia, grass carp, silver barb etc. also started in the paddy fields. Higher income from fish farming contributed positively in improving the housing, sanitation and education system in the study areas. It is seen that the medium and medium high lands were only used for alternate rice fish farming. The net income was high in any fish based cropping system that motivated the farmers to introduce fish based cropping system in the low-lying inland areas. As a result, the regional as well as communal income disparities occurred. However, the extraction of ground water became common during the dry period as the water was used for both rice and fish farming. Mass conversion of paddy fields into rice-fish culture ponds caused water logging in the study areas. In most cases, the participated farmers mentioned that they could be easily benefited by producing fish with T. Aman or only fish during the monsoon season. They agreed that this was an impressive technology to them and they could generate employment opportunities throughout the year. Finally, the social, economic and technical problems which are acting as constraints to rapid expansion of fish production system were reported from the interviewee.
Resumo:
Temperature effect on the pathogenicity of selected Edwardsiella tarda V-1 strain to Japanese eel, Anguilla japonica was investigated. To evaluate the effects of both pathogen incubation temperature and fish cultivation temperature on pathogen pathogenicity a two-factor design was conducted. E. tarda was incubated at 15, 20, 25, 30 and 37±1°C, and the fish (mean weight: 100g) were reared at 15, 20, 25 and 28±1°C respectively. The fish reared at different temperatures were infected with the E. tarda incubated at different temperatures. The results of a 4-day LD50 test showed that temperature significantly affected the pathogenicity of E. tarda (p<0.01) and the interaction between the two factors was also significant (p<0.01). For fish reared at 20°C the pathogenicity of E. tarda was the highest at 30°C of pathogen incubation. When the fish rearing temperature was raised to 25 and 28°C, the pathogenicity of E. tarda incubated at all temperatures increased. Isolation testing demonstrated results similar to those of LD50. The selected isolate was virulent to eel, but pathogenicity varied with temperature.
Resumo:
Live 'agiis' have been proven to be a good feed for shrimp for the past ten years by polyculture fish farmers in the province of Capiz, in the island of Panay, west central Philippines. A brief account is given of culture and feeding operations. Its cultivation period is short and seeds are readily available. It can reduce dependence on trash fish which is now getting to be scarce; it also seems much cheaper. Perhaps this fast-growing tiny bivalve can be scientifically investigated by students of aquaculture as feed for other commercial aquaculture species. Its scientific identification can be a good start.