26 resultados para Occupy
Resumo:
We summarize the life history characteristics of silvergray rockfish (Sebastes brevispinis) based on commercial fishery data and biological samples from British Columbia waters. Silvergray rockfish occupy bottom depths of 100−300 m near the edge of the continental shelf. Within that range, they appear to make a seasonal movement from 100−200 m in late summer to 180−280 m in late winter. Maximum observed age in the data set was 81 and 82 years for females and males, respectively. Maximum length and round weight was 73 cm and 5032 g for females and 70 cm and 3430 g for males. The peak period of mating lasted from December to February and parturition was concentrated from May to July. Both sexes are 50% mature by 9 or 10 years and 90% are mature by age 16 for females and age 13 years for males. Fecundity was estimated from one sample of 132 females and ranged from 181,000 to 1,917,000 oocytes and there was no evidence of batch spawning. Infection by the copepod parasite Sarcotaces arcticus appears to be associated with lower fecundity. Sexual maturation appears to precede recruitment to the trawl fishery; thus spawning stock biomass per recruit analysis (SSB/R) indicates that a F50% harvest target would correspond to an F of 0.072, 20% greater than M (0.06). Fishery samples may bias estimates of age at maturity but a published meta-data analysis, in conjunction with fecundity data, independently supports an early age of maturity in relation to recruitment. Although delayed recruitment to the fishery may provide more resilience to exploitation, managers may wish to forego maximizing economic yield from this species. Silvergray rockfish are a relatively minor but unavoidable part of the multiple species trawl catch. Incorrectly “testing” the resilience of one species may cause it to be the weakest member of the specie
Resumo:
A mail survey of tournament shark anglers and party boat shark anglers was completed to examine their fishing activity, attitudes, trip expenditures, and consumer surplus. A sample of 700 shark anglers was selected from tournaments in the Gulf of Mexico during 1990, and a sample of party boat shark anglers was drawn from Port Aransas, Tex., party boat anglers during the summer of 1991. A response rate of 58% (excluding nondeliverables) was obtained from tournament anglers. The sample of party boat shark anglers was too small to provide useful results. Tournament shark anglers reported fishing an average of 58 days per year and targeted sharks and other large marine species. Tournaments occupy a small portion of their fishing effort. If this group of anglers were not able to fish for sharks, one-third indicated no other species would be an acceptable substitute, while others were willing to substitute other large marine species. Shark trip expenditures averaged $197 per trip with a consumer surplus of $111 per trip. Based on MRFSS estimates of the number of shark fishing trips, we estimate a total of $43,355,000 was spent by shark anglers in the Gulf of Mexico with a consumer surplus of $23,865,000 for a total gross value of the shark fishery of $66,220,000. MRFSS estimates of the number of sharks landed indicate an equivalent use value of $183 per shark.
Resumo:
For purposes ofthe Endangered Species Act (ESA), a "species" is defined to include "any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature. "Federal agencies charged with carrying out the provisions of the ESA have struggled for over a decade to develop a consistent approach for interpreting the term "distinct population segment." This paper outlines such an approach and explains in some detail how it can be applied to ESA evaluations of anadromous Pacific salmonids. The following definition is proposed: A population (or group of populations) will be considered "distinct" (and hence a "species ")for purposes of the ESA if it represents an evolutionarily significant unit (ESU) of the biological species. A population must satisfy two criteria to be considered an ESU: 1) It must be substantially reproductively isolated from other conspecific population units, and 2) It must represent an important component in the evolutionary legacy of the species. Isolation does not have to be absolute, but it must be strong enough to permit evolutionarily important differences to accrue in different population units. The second criterion would be met if the population contributes substantially to the ecological/genetic diversity of the species as a whole. Insights into the extent of reproductive isolation can be provided by movements of tagged fish, natural recolonization rates observed in other populations, measurements of genetic differences between populations, and evaluations of the efficacy of natural barriers. Each of these methods has its limitations. Identification of physical barriers to genetic exchange can help define the geographic extent of distinct populations, but reliance on physical features alone can be misleading in the absence of supporting biological information. Physical tags provide information about the movements of individual fish but not the genetic consequences of migration. Furthermore, measurements ofc urrent straying or recolonization rates provide no direct information about the magnitude or consistency of such rates in the past. In this respect, data from protein electrophoresis or DNA analyses can be very useful because they reflect levels of gene flow that have occurred over evolutionary time scales. The best strategy is to use all available lines of evidence for or against reproductive isolation, recognizing the limitations of each and taking advantage of the often complementary nature of the different types of information. If available evidence indicates significant reproductive isolation, the next step is to determine whether the population in question is of substantial ecological/genetic importance to the species as a whole. In other words, if the population became extinct, would this event represent a significant loss to the ecological/genetic diversity of thes pecies? In making this determination, the following questions are relevant: 1) Is the population genetically distinct from other conspecific populations? 2) Does the population occupy unusual or distinctive habitat? 3) Does the population show evidence of unusual or distinctive adaptation to its environment? Several types of information are useful in addressing these questions. Again, the strengths and limitations of each should be kept in mind in making the evaluation. Phenotypic/life-history traits such as size, fecundity, and age and time of spawning may reflect local adaptations of evolutionary importance, but interpretation of these traits is complicated by their sensitivity to environmental conditions. Data from protein electrophoresis or DNA analyses provide valuable insight into theprocessofgenetic differentiation among populations but little direct information regarding the extent of adaptive genetic differences. Habitat differences suggest the possibility for local adaptations but do not prove that such adaptations exist. The framework suggested here provides a focal point for accomplishing the majorgoal of the Act-to conserve the genetic diversity of species and the ecosystems they inhabit. At the same time, it allows discretion in the listing of populations by requiring that they represent units of real evolutionary significance to the species. Further, this framework provides a means of addressing several issues of particular concern for Pacific salmon, including anadromous/nonanadromous population segments, differences in run-timing, groups of populations, introduced populations, and the role of hatchery fish.
Resumo:
Black Sea Bass (Centropristis striata) in the mid-Atlantic Bight undertake seasonal cross-shelf movements to occupy inshore rocky reefs and hardbottom habitats between spring and fall. Shelf-wide migrations of this stock are well documented, but movements and home ranges of fish during their inshore residency period have not been described. We tagged 122 Black Sea Bass with acoustic transmitters at a mid-Atlantic reef to estimate home-range size and factors that influence movements (>400 m) at a 46.1-km2 study site between May and November 2003. Activity of Black Sea Bass was greatest and most consistent during summer but declined rapidly in September as water temperatures at the bottom of the seafloor increased on the inner shelf. Black Sea Bass maintained relatively large home ranges that were fish-size invariant but highly variable (13.7–736.4 ha), underscoring the importance of large sample sizes in examination of population-level characteristics of mobile species with complex social interactions. On the basis of observed variations in movement patterns and the size of home ranges, we postulate the existence of groups of conspecifics that exhibit similar space-use behaviors. The group of males released earlier in the tagging period used larger home ranges than the group of males released later in our study. In addition, mean activity levels and the probability of movement among acoustic stations varied among groups of fish in a complex manner that depended on sex. These differences in movement behaviors may increase the vulnerability of male fish to passive fishing gears, further exacerbating variation in exploitation rates for this species among reefs.
Resumo:
The bigeye thresher shark (Alopias superciliosus, Lowe 1841) is one of three sharks in the family Alopiidae, which occupy pelagic, neritic, and shallow coastal waters throughout the altropics and subtropics (Gruber and Compagno, 1981; Castro, 1983). All thresher sharks possess an elongated upper caudal lobe, and the bigeye thresher shark is distinguished from the other alopiid sharks by its large upward-looking eyes and grooves on the top of the head (Bigelow and Schroeder, 1948). Our present understanding of the bigeye thresher shark is primarily based upon data derived from specimens captured in fisheries, including knowledge of its morphological features (Fitch and Craig, 1964; Stillwell and Casey, 1976; Thorpe, 1997), geographic range as far as it overlaps with fisheries (Springer, 1943; Fitch and Craig, 1964; Stillwell and Casey, 1976; Gruber and Compagno, 1981; Thorpe, 1997), age, growth and maturity (Chen et al., 1997; Liu et al., 1998), and aspects of its reproductive biology (Gilmore, 1983; Moreno and Moron, 1992; Chen et al., 1997).
Resumo:
Lengths and ages of sword-fish (Xiphias gladius) estimated from increments on otoliths of larvae collected in the Caribbean Sea, Florida Straits, and off the southeastern United States, indicated two growth phases. Larvae complete yolk and oil globule absorption 5 to 6 days after hatching (DAH). Larvae <13 mm preserved standard length (PSL) grow slowly (~0.3 mm/d); larvae from 13 to 115 mm PSL grow rapidly (~6 mm/d). The acceleration in growth rate at 13 days follows an abrupt (within 3 days) change in diet, and in jaw and alimentary canal structure. The diet of swordfish larvae is limited. Larvae <8 mm PSL from the Caribbean, Gulf of Mexico, and off the southeastern United States eat exclusively copepods, primarily of one genus, Corycaeus. Larvae 9 to 11 mm eat copepods and chaetognaths; larvae >11 mm eat exclusively neustonic fish larvae. This diet indicates that young larvae <11 mm occupy the near-surface pelagia, whereas, older and longer larvae are neustonic. Spawning dates for larvae collected in various regions of the western North Atlantic, along with the abundance and spatial distribution of the youngest larvae, indicate that spawning peaks in three seasons and in five regions. Swordfish spawn in the Caribbean Sea, or possibly to the east, in winter, and in the western Gulf of Mexico in spring. Elsewhere swordfish spawn year-round, but spawning peaks in the spring in the north-central Gulf of Mexico, in the summer off southern Florida, and in the spring and early summer off the southeastern United States. The western Gulf Stream frontal zone is the focus of spawning off the southeastern coast of the United States, whereas spawning in the Gulf of Mexico seems to be focused in the vicinity of the Gulf Loop Current. Larvae may use the Gulf of Mexico and the outer continental shelf off the east coast of the United States as nursery areas. Some larvae may be transported northward, but trans-Atlantic transport of larvae is unlikely.
Resumo:
A trophic study was carried out in February of 2012 to January 2013 on the ecosystem in the Persian Gulf, Bushehr provience. A total of 2,948 samples of stomach contents were analyzed based on the weight and number of food items and were identified about 40 preys. Crustacean and bony fish were as a main prey in most of the stomach contents . The mean average trophic level was estimated at 3.6 by Ecopath software. In this research, the mean level were studied between eight species varied from 3.47 to 4.61, Saurida tumbil occupy the highest and the Argyrops spinifer was the lowest level. The ranges of total mortality varied from 0.7 to 3.05 per years. The food consumption rate was estimated about 69.82 per year. The overlap index showed that the prey items such as fish, crustacean, bivalve and echinoderm were shared about 65, 15, 15 and 6 percent in all stomach of individual in respectively. Mixed trophic analysis indicates that benthos have a positive effect on most of the fish species. Most species have a negative impact on themselves, interpreted here as reflecting increased with in group competition for resources. This preliminary model can be helpful to determine the gaps in the present knowledge about demersal system of the Persian Gulf.
Resumo:
The tetraclitid fauna at Elat, Israel, on the Gulf of Aqaba, Red Sea, consists of three morphologically distinct species. Tetraclita rufotincta Pilsbry, 1916 was reported previously from this region and may have been confounded with T. achituvi n.sp. and T. barnesorum n.sp. Although these species occur sympatrically, according to previous studies, and recent observations, they apparently occupy different levels in the narrow intertidal zone (=50 cm) of this area. Cirral morphology suggests that each differs in the manner by which they capture and manipulate prey. Little is known about the occurrence of these new species elsewhere in the Red Sea and adjoining Arabian Sea.
Resumo:
A great part of Uganda is endowed with water bodies in the forms of rivers and open water lakes. These bodies are never alone. They are either flanked or associated with plants, which are adapted to the wet conditions. They are so characteristic that they are part and parcel of the aquatic ecosystems. They occupy various positions depending on the amount of water in the relevant habitats.
Resumo:
A casual study of the hydrological map of Uganda would convince every serious fisherman and fisheater that he is most favoured to be in Uganda. The extent and distribution of the country's aquatic system plus the rich variety of fish species there is promises a fishery potential of considerable magnitude: The open waterways comprised by the Uganda portions of Lakes Victoria, Albert and Edward; and Lakes Kyoga, George plus minor lakes Wamala, Kijanebarora, mutanda, etc. occupy about 15% of the total surface area (91,000 m2; Depart. Land Survey, 1962). Most of the nation's fish supplies are currontly from this source. 1.2. A rich network of permanent and seasonal rivers and streams filling and/or emptying various water systems covers most of Uganda. This aquatic network is associated with a fish fauna whose immense significance as a source of protein is perhaps better appreciated by the local subsistance fisherman and consumer than by the fisheries scientist and manager in this country. Many species of this fish fauna have strong affinities with the open water systems while some are typically riverine. 1.3. Then there are wetlands composed mainly of expanses of swamp, but including some areas of bog. These cover about 2% of the country. While the variety of fish fauna found here is limited by the rather hostile nature of the environment (comparatively de-oxygenated under a canopy of dense stands of emergont vegetation) several specialised fishes e.g. Clarias spp. and Protpterus aethiopicus (Kamongo) occur here. Availability of permanent and seasonal sources of water, well distributed throughout most areas of Uganda, opens up immense potential for a variety of aquaculture practices. However, while active exploitation of much of these fishery resources is currently underway, important questions regarding the magnitudes of the various resource potentials and dynamics, and about suitable levels and modes of exploitation, are yet unanswered. These gaps in knowledge go about the fishery resources of Uganda would hinder formulation of adequate development and management schemes. This short paper examines some of the above problems and suggests some approaches towards balanced oxploitation and management of the fisheries of Uganda.
Resumo:
Ocean acidification poses a serious threat to a broad suite of calcifying organisms. Scleractinian corals and cal- careous algae that occupy shallow, tropical waters are vulnerable to global changes in ocean chemistry be- cause they already are subject to stressful and variable carbon dynamics at the local scale. For example, net heterotrophy increases carbon dioxide concentrations, and pH varies with diurnal fluctuations in photosyn- thesis and respiration. Few researchers, however, have investigated the possibility that carbon dioxide con- sumption during photosynthesis by non-calcifying photoautotrophs, such as seagrasses, can ameliorate deleterious effects of ocean acidi fi cation on sympatric calcareous algae. Naturally occurring variations in the density of seagrasses and associated calcareous algae provide an ecologically relevant test of the hypoth- esis that diel fl uctuations in water chemistry driven by cycles of photosynthesis and respiration within seagrass beds create microenvironments that enhance macroalgal calci fi cation. In Grape Tree Bay off Little Cayman Island BWI, we quanti fi ed net production and characterized calci fi cation for thalli of the calcareous green alga Halimeda incrassata growing within beds of Thalassia testudinum with varying shoot densities. Re- sults indicated that individual H . incrassata thalli were ~6% more calci fi ed in dense seagrass beds. On an areal basis, however, far more calcium carbonate was produced by H . incrassata in areas where seagrasses were less dense due to higher rates of production. In addition, diel pH regimes in vegetated and unvegetated areas within the lagoon were not signi fi cantly different, suggesting a high degree of water exchange and mixing throughout the lagoon. These results suggest that, especially in well-mixed lagoons, carbonate pro- duction by calcareous algae may be more related to biotic interactions between seagrasses and calcareous algae than to seagrass-mediated changes in local water chemistry.