33 resultados para NOR-CLERODANE DITERPENE
Resumo:
Hydroclimatic conditions in the Gulf of Guinea between Senegal and Nigeria are briefly described emphasizing the seasonal variations of transparency. Analysis of the Abidjan based shrimp fleet allowed to the description of the seasonal variations of activity rhythms for Côte d'Ivoire, Ghana, and Nigeria. These rhythms are different between seasons, between fishing grounds, and sometimes even between depths on a given ground. These variations follow the turbidity ones. Diurnal activity is observed in very turbid waters, nocturnal and transition activity in clearer ones. The authors assume that the basic behaviour is a nocturnal one, but that the shrimp-trawlers catches reflect some apparently different ones resulting from diel variations in the stock availability. To explain the apparently diurnal behaviour observed most of the year over the whole Gulf of Guinea it is suggested that these generally benthic shrimps become nectonic at night when turbidity is very high. The results obtained in Ivory Coast, Ghana and Nigeria are compared to those from Senegal where hydroclimatic conditions are different. The similarities are emphasized. The differences in observed behaviour are supposedly caused by the cold season water temps which are sufficiently low to disturb the nor mal activity rhythm.
Resumo:
Elops lacerta is a juvenil's predator of all the fish species living in the same biotope. its preys follow three systematic orders: 1 - Fishes: they are the most important in the stomachal contents of Elops lacerta, and are dominated by clupeidae, mainly by Ethmalosa fimbriata; 2 - Shrimps: mainly the Peneidae, are not very important; 3 - Molluscs: they are the less important preys and are represented by only one Pelecypoda family: the Corbulidae. This earlier predator feeds rather at night than during the day. It has neither preferential prey nor apparent seasonal variations in its food habits.
Resumo:
Many of British rivers hold stocks of salmon (Salmo salar L.) and sea trout (Salmo trutta L.) and during most of the year some of the adult fish migrate upstream to the head waters where, with the advent of winter, they will eventually spawn. For a variety of reasons, including the generation of power for milling, improving navigation and measuring water flow, man has put obstacles in the way of migratory fish which have added to those already provided by nature in the shape of rapids and waterfalls. While both salmon and sea trout, particularly the former, are capable of spectacular leaps the movement of fish over man-made and natural obstacles can be helped, or even made possible, by the judicious use of fish passes. These are designed to give the fish an easier route over or round an obstacle by allowing it to overcome the water head difference in a series of stages ('pool and traverse' fish pass) or by reducing the water velocity in a sloping channel (Denil fish pass). Salmon and sea trout make their spawning runs at different flow conditions, salmon preferring much higher water flows than sea trout. Hence the design of fish passes requires an understanding of the swimming ability of fish (speed and endurance) and the effect of water temperature on this ability. Also the unique features of each site must be appreciated to enable the pass to be positioned so that its entrance is readily located. As well as salmon and sea trout, rivers often have stocks of coarse fish and eels. Coarse fish migrations are generally local in character and although some obstructions such as weirs may allow downstream passages only, they do not cause a significant problem. Eels, like salmon and sea trout, travel both up and down river during the course of their life histories. However, the climbing power of elvers is legendary and it is not normally necessary to offer them help, while adult silver eels migrate at times of high water flow when downstream movement is comparatively easy: for these reasons neither coarse fish nor eels are considered further. The provision of fish passes is, in many instances, mandatory under the Salmon and Freshwater Fisheries Act 1975. This report is intended for those involved in the planning, siting, construction and operation of fish passes and is written to clarify the hydraulic problems for the biologist and the biological problems for the engineer. It is also intended to explain the criteria by which the design of an individual pass is assessed for Ministerial Approval.
Resumo:
Phytoplankton counts made under the light microscope were compared to counts using an electronic dimensional particle counter. Counts were made on a monthly basis, on water samples taken from one station in the Sanyati Basin. Neither total particle numbers nor total particle volume compare closely with phytoplankton numbers. Total particle numbers were of the order of one and a half to two times greater than the phytoplankton numbers.
Resumo:
We evaluated measures of bioelectrical impedance analysis (BIA) and Fulton’s condition factor (K) as potential nonlethal indices for detecting short-term changes in nutritional condition of postsmolt Atlantic salmon (Salmo salar). Fish reared in the laboratory for 27 days were fed, fasted, or fasted and then refed. Growth rates and proximate body composition (protein, fat, water) were measured in each fish to evaluate nutritional status and condition. Growth rates of fish responded rapidly to the absence or reintroduction of food, whereas body composition (% wet weight) remained relatively stable owing to isometric growth in fed fish and little loss of body constituents in fasted fish, resulting in nonsignificant differences in body composition among feeding treatments. The utility of BIA and Fulton’s K as condition indices requires differences in body composition. In our study, BIA measures were not significantly different among the three feeding treatments, and only on the final day of sampling was K of fasted vs. fed fish significantly different. BIA measures were correlated with body composition content; however, wet weight was a better predictor of body composition on both a content and concentration (% wet weight) basis. Because fish were growing isometrically, neither BIA nor K was well correlated with growth rate. For immature fish, where growth rate, rather than energy reserves, is a more important indicator of fish condition, a nonlethal index that reflects shortterm changes in growth rate or the potential for growth would be more suitable as a condition index than either BIA measures or Fulton�
Resumo:
In 2001, a research submersible was used to survey seafloor habitat and associated benthos in the northeastern Gulf of Alaska. One inspected site had a uniform sand-silt substrate, punctuated by widely spaced (10–20 m apart) boulders. Two-thirds of the boulders had sponge, Aphrocallistes sp., colonies. Eighty-two juvenile (5–10 cm) red rockfish (Sebastes sp.) were also observed during the dive, and all of these fish were closely associated with the sponges. No juvenile red rockfish were seen in proximity to boulders without sponges, nor were any observed on the sand-silt substrate between boulders.
Resumo:
There is nothing mysterious about how coastal rivers, their estuaries, and their relationship with the sea all work to satisfy many of our greatest needs, including drinkable water, fish and shellfish, and soils essential for sustaining the production of food and fiber. Nor are the methods that have proved successful in the protection and restoration of watershed health difficult to understand. It is difficult, however, to imagine how we are to survive without healthy watersheds. Each watershed along California’s coast shows signs of increasing abuse from road construction and maintenance, livestock grazing, residential development, timber harvesting, and a dozen other human activities. In some cases whole streams have simply been wiped away. This document has been created to guide and support every person in the community, from homemaker to elected official, who wants her or his watershed to provide clean water, harvestable fish resources and other proof that life in the watershed cannot only be maintained but also enjoyed. It is based on years of experience with watershed protection and restoration in California. If citizen involvement is to be effective, it must draw not only on scientific knowledge but also on an understanding of how to translate individual views into commitments and capable group action. This guide briefly reviews the condition of California’s coastal watersheds, identifies the kinds of concerns that have led citizens to successful watershed protection efforts, explains why citizen, in addition to government, effort is essential for watershed protection and restoration to succeed, and puts in the reader’s hands both the technical and organizational “tools of the trade” in the hope that those who use this guide will be encouraged to join in efforts to make their watershed serve this and future generations better.
Resumo:
Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.
Resumo:
Professionals who are responsible for coastal environmental and natural resource planning and management have a need to become conversant with new concepts designed to provide quantitative measures of the environmental benefits of natural resources. These amenities range from beaches to wetlands to clean water and other assets that normally are not bought and sold in everyday markets. At all levels of government — from federal agencies to townships and counties — decisionmakers are being asked to account for the costs and benefits of proposed actions. To non-specialists, the tools of professional economists are often poorly understood and sometimes inappropriate for the problem at hand. This handbook is intended to bridge this gap. The most widely used organizing tool for dealing with natural and environmental resource choices is benefit-cost analysis — it offers a convenient way to carefully identify and array, quantitatively if possible, the major costs, benefits, and consequences of a proposed policy or regulation. The major strength of benefit-cost analysis is not necessarily the predicted outcome, which depends upon assumptions and techniques, but the process itself, which forces an approach to decision-making that is based largely on rigorous and quantitative reasoning. However, a major shortfall of benefit-cost analysis has been the difficulty of quantifying both benefits and costs of actions that impact environmental assets not normally, nor even regularly, bought and sold in markets. Failure to account for these assets, to omit them from the benefit-cost equation, could seriously bias decisionmaking, often to the detriment of the environment. Economists and other social scientists have put a great deal of effort into addressing this shortcoming by developing techniques to quantify these non-market benefits. The major focus of this handbook is on introducing and illustrating concepts of environmental valuation, among them Travel Cost models and Contingent Valuation. These concepts, combined with advances in natural sciences that allow us to better understand how changes in the natural environment influence human behavior, aim to address some of the more serious shortcomings in the application of economic analysis to natural resource and environmental management and policy analysis. Because the handbook is intended for non-economists, it addresses basic concepts of economic value such as willingness-to-pay and other tools often used in decision making such as costeffectiveness analysis, economic impact analysis, and sustainable development. A number of regionally oriented case studies are included to illustrate the practical application of these concepts and techniques.
Resumo:
This study examines genetic variation at five microsatellite loci and at the vesicle membrane protein locus, pantophysin, of Atlantic cod (Gadus morhua) from Browns Bank, Georges Bank, and Nantucket Shoals. The Nantucket Shoals sample represents the first time cod south of Georges Bank have been genetically evaluated. Heterogeneity of allelic distribution was not observed (P>0.05) between two temporally separated Georges Bank samples indicating potential genetic stability of Georges Bank cod. When Bonferroni corrections (α=0.05, P<0.017) were applied to pairwise measures of population differentiation and estimates of FST, significance was observed between Nantucket Shoals and Georges Bank cod and also between Nantucket Shoals and Browns Bank cod. However, neither significant differentiation nor significant estimates of FST were observed between Georges Bank and the Browns Bank cod. Our research suggests that the cod spawning on Nantucket Shoals are genetically differentiated from cod spawning on Browns Bank and Georges Bank. Managers may wish to consider Nantucket Shoals cod a separate stock for assessment and management purposes in the future.
Resumo:
We describe reproductive dynamics of female spotted seatrout (Cynoscion nebulosus) in South Carolina (SC). Batch fecundity (BF), spawning frequency (SF), relative fecundity (RF), and annual fecundity (AF) for age classes 1−3 were estimated during the spawning seasons of 1998, 1999, and 2000. Based on histological evidence, spawning of spotted seatrout in SC was determined to take place from late April through early September. Size at first maturity was 248 mm total length (TL); 50% and 100% maturity occurred at 268 mm and 301 mm TL, respectively. Batch fecundity estimates from counts of oocytes in final maturation varied significantly among year classes. One-year-old spotted seatrout spawned an average of 145,452 oocytes per batch, whereas fish aged 2 and 3 had a mean BF of 291,123 and 529,976 oocytes, respectively. We determined monthly SF from the inverse of the proportion of ovaries with postovulatory follicles (POF) less than 24 hours old among mature and developing females. Overall, spotted seatrout spawned every 4.4 days, an average of 28 times during the season. A chronology of POF atresia for water temperature >25°C is presented. Length, weight (ovary-free), and age explained 67%, 65%, and 58% of the variability in BF, respectively. Neither RF (number of oocytes/g ovary-free weight) nor oocyte diameter varied significantly with age. However, RF was significantly greater and oocyte diameter was smaller at the end of the spawning season. Annual fecundity estimates were approximately 3.2, 9.5, and 17.6 million oocytes for each age class, respectively. Spotted seatrout ages 1−3 contributed an average of 29%, 39%, and 21% to the overall reproductive effort according to the relative abundance of each age class. Ages 4 and 5 contributed 7% and 4%, respectively, according to predicted AF values.
Resumo:
Two bycatch reduction devices (BRDs)—the extended mesh funnel (EMF) and the Florida fisheye (FFE)—were evaluated in otter trawls with net mouth circumferences of 14 m, 17 m, and 20 m and total net areas of 45 m2. Each test net was towed 20 times in parallel with a control net that had the same dimensions and configuration but no BRD. Both BRDs were tested at night during fall 1996 and winter 1997 in Tampa Bay, Florida. Usually, the bycatch was composed principally of finfish (44 species were captured); horseshoe crabs and blue crabs seasonally predominated in some trawls. Ten finfish species composed 92% of the total finfish catch; commercially or recreationally valuable species accounted for 7% of the catch. Mean finfish size in the BRD-equipped nets was usually slightly smaller than that in the control nets. Compared with the corresponding control nets, both biomass and number of finfish were almost always less in the BRD-equipped nets but neither shrimp number nor biomass were significantly reduced. The differences in proportions of both shrimp and finfish catch between the BRD-equipped and control nets varied between seasons and among net sizes, and differences in finfish catch were specific for each BRD type and season. In winter, shrimp catch was highest and size range of shrimp was greater than in fall. Season-specific differences in shrimp catch among the BRD types occurred only in the 14-m, EMF nets. Finfish bycatch species composition was also highly seasonal; each species was captured mainly during only one season. However, regardless of the finfish composition, the shrimp catch was relatively constant. In part as a result of this study, the State of Florida now requires the use of BRDs in state waters.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A high resolution, AMS carbon-14-dated sediment record from the Sulu Sea clearly indicates the Younger Dryas climatic event affected the western equatorial Pacific. Presence of the Younger Dryas in the tropical western Pacific indicates this climatic event is not restricted to the North Atlantic nor to high latitudes, but is global in extent.
Resumo:
The major task in hand at the beginning of the year was the Deep Water Fishing Survey in Uganda waters. This has continued throughout the year with varying, lm generally, not particularly encouraging, results. A full account is given in paras. 33 to 67 of this Report. The new method of marking Tilapia was introduced at the beginning of the year, and, apart from delays resulting from the delivery position of marking materials, has gone ahead steadily. The improvement in results expected from this method was already evident after only nine months' work, and information has been obtained which never was-nor could have been-obtained by the old method of marking. A full account is given in paras 114 to 133.
Resumo:
Mangrove, a tidal wetland, is a good example of complex land and water system whose resource attributes is neither fully understood from an ecological perspective nor valued comprehensively in economic terms. With increased ecological and social perception of the functions of wetlands, the utility and relative values will increase. The perception, however, varies from society to society. It must be recognized that mangrove forests differ greatly in local conditions and in their ability to produce a wide variety of economic products. What may be highly productive strategy for one country may have little meaning to its neighbor. Therefore, it becomes essential that from among diversity of potential uses of the mangrove environment, specific uses will have to be decided, and management plan developed on site, or area specific basis. It is therefore necessary to arrive at a balance between the views of the ecologists and economists on the management of mangroves. Biological conservation should encompass resource management in the sense that integrity of the biological and physical attributes of the resource base should be sustained and man-induced management practices should not alter an ecosystem to the extent that biological production is eliminated. Sustained yield management for food, fiber and fuel would serve to sustain local fisheries while generating new economic enterprises. This requires the recognition of mangrove environment as a resource with economic value, and managed according to local conditions and national priorities.