55 resultados para Municipal water supply
Resumo:
Tastes and odours are amongst the few water quality standards immediately apparent to a consumer and, as a result, account for most consumer complaints about water quality. Although taste and odour problems can arise from a great many sources, from an operational point of view they are either ”predictable” or ”unpredictable”. The former - which include problems related to actinomycete and algal growth - have a tendency to occur in certain types of water under certain combinations of conditions, whereas the latter - typically chemical spills - can occur anywhere. Long-term control is one option for predictable problems, although biomanipulation on a large scale has had utile success. Detection and avoidance is a more practicable option for both predictable and unpredictable problems, particularly if the distribution network can be serviced from other sources. Where these are not feasible, then water treatment, typically using activated carbon, is possible. In general there is a reasonable understanding of what compounds cause taste and odour problems, and how to treat these. An efficient taste and odour control programme therefore relies ultimately on good management of existing resources. However, a number of problems lie outside the remit of water supply companies and will require more fundamental regulation of activities in the catchment.
Resumo:
Whilst current methods for the isolation and enumeration of Cryptosporidium spp. oocysts in water have provided some insight into their occurrence and significance, they are regarded as being inefficient, variable and time-consuming, with much of the interpretation being left to the expertise of the analyst. Two expectations of novel developments are to reduce the variability and subjectivity associated with the isolation and identification of oocysts. Flocculation, immunomagnetisable and flow cytometric techniques, for concentrating oocysts from water samples, should prove more reliable than current methods, whilst the development of more avid and specific monoclonal antibodies in conjunction with the use of nuclear fluorochromes will aid identification. Further insight into the viability, taxonomy, species identification, infectivity and virulence of the parasite should be forthcoming through the use of techniques such as the polymerase chain reaction, in situ hybridisation and non-uniform alternating current electrical fields. Such information is necessary in order to enable microbiologists, epidemiologists, engineers, utility operators and regulators to assess the safety of a water supply, with respect to Cryptosporidium contamination, more effectively.
Resumo:
This is the Water Level Management Plan for the Rostherne Mere by the Environment Agency. The purpose of the Plan is to provide a formal basis for managing the land drainage system and water supply system of the area in order to provide a sustainable balance between the conservation and agricultural interest in the area. No changes are proposed to present water level management or maintenance practices unless and until such changes are agreed by all parties. The report contains sections on description of Site, water level management, maintenance, nature conservation, agriculture, fisheries, archaeology, water quality and water resources, development adjacent to watercourses, contingencies and objectives of the Water Level Management.
Resumo:
Baltimore Harbor is polluted by discharge of sewage and industrial wastes into tributary streams and peripheral waters. The Harbor is used extensively for navigation, industrial water supply, and recreation as well as for waste disposal. The degree of pollution varies from negligible in the principal fairway to severe in the innermost sections. Private industry discharges several hundred tons of acid materials daily and is also the principal source of organic pollution.
Resumo:
Today , Providing drinking water and process water is one of the major problems in most countries ; the surface water often need to be treated to achieve necessary quality, and in this way, technological and also financial difficulties cause great restrictions in operating the treatment units. Although water supply by simple and cheap systems has been one of the important objectives in most scientific and research centers in the world, still a great percent of population in developing countries, especially in rural areas, don't benefit well quality water. One of the big and available sources for providing acceptable water is sea water. There are two ways to treat sea water first evaporation and second reverse osmosis system. Nowadays R.O system has been used for desalination because of low budget price and easily to operate and maintenance. The sea water should be pretreated before R.O plants, because there is some difficulties in raw sea water that can decrease yield point of membranes in R.O system. The subject of this research may be useful in this way, and we hope to be able to achieve complete success in design and construction of useful pretreatment systems for R.O plant. One of the most important units in the sea water pretreatment plant is filtration, the conventional method for filtration is pressurized sand filters, and the subject of this research is about new filtration which is called continuous back wash sand filtration (CBWSF). The CBWSF designed and tested in this research may be used more economically with less difficulty. It consists two main parts first shell body and second central part comprising of airlift pump, raw water feeding pipe, air supply hose, backwash chamber and sand washer as well as inlet and outlet connections. The CBWSF is a continuously operating filter, i.e. the filter does not have to be taken out of operation for backwashing or cleaning. Inlet water is fed through the sand bed while the sand bed is moving downwards. The water gets filtered while the sand becomes dirty. Simultaneously, the dirty sand is cleaned in the sand washer and the suspended solids are discharged in backwash water. We analyze the behavior of CBWSF in pretreatment of sea water instead of pressurized sand filter. There is one important factor which is not suitable for R.O membranes, it is bio-fouling. This factor is defined by Silt Density Index (SDI).measured by SDI. In this research has been focused on decreasing of SDI and NTU. Based on this goal, the prototype of pretreatment had been designed and manufactured to test. The system design was done mainly by using the design fundamentals of CBWSF. The automatic backwash sand filter can be used in small and also big water supply schemes. In big water treatment plants, the units of filters perform the filtration and backwash stages separately, and in small treatment plants, the unit is usually compacted to achieve less energy consumption. The analysis of the system showed that it may be used feasibly for water treating, especially for limited population. The construction is rapid, simple and economic, and its performance is high enough because no mobile mechanical part is used in it, so it may be proposed as an effective method to improve the water quality and consequently the hygiene level in the remote places of the country.
Resumo:
One of the causes of lower artesian pressure, water waste and aquifer contamination is the misuse and insufficient care of artesian wells. In 1953, Senate Bill No. 57, entitled "An Act to Protect and Control the Artesian Waters of the State" (see Appendix) became a law. This law was passed through the efforts exerted by leading members of the Senate and the House of Representatives, who understood the need for a wise and controlled expenditure of our most valuable natural resource. The State Geologist and his authorized representatives were designated by this law to enforce this conservation measure; however, no financial provision was included for the 1953-55 biennium. The proposed program of the Florida Geological Survey for this biennium did not include the funds nor provide any full-time personnel for the enforcement of this statute. As a result, little actual work was accomplished during these two years, although much time was given to planning and discussion of the problem. Realizing that this program could provide additional basic data needed in the analysis of the water-supply problem, the State Geologist sought and was granted by the 1955 Legislature adequate funds with which to activate the first phase of the enforcement of Florida Statute No. 370.051-054. Enumerated below is a summary of the progress made on this investigation as outlined previously: 1. Data have been collected on 967 wildly flowing wells in 22 counties. 2. Chloride determinations have been run on 850 of the 967 wells. 3. Of the 967 wells, 554 have chlorides in excess of the 250 ppm, the upper limit assigned by the State Board of Health for public consumption. 4. Water escapes at the rate of 37, 762 gallons per minute from these 967 wells. This amounts to 54, 377, 280 gallons per day. The investigation is incomplete at this time; therefore, no final conclusions can be reached. However, from data already collected, the following recommendations are proposed: 1. That the present inventory of wildly flowing wells be completed for the entire State. 2. That the current inventory of wildly flowing wells be expanded at the conclusion of the present inventory to include all flowing wells. 3. That a complete statewide inventory program be established and conducted in cooperation with the Ground Water Branchof the U.S. Geological Survey. 4. That the enforcement functions as set down in Sections 370.051/.054, Florida Statutes, be separated from the program to collect water-resource data and that these functions be given to the Water Resources Department, if such is created (to be recommended by the Water Resources Study Commission in a water policy law presented to the 1957 Legislature). 5. That the research phase (well inventory) of the program remain under the direction of the Florida Geological Survey. (PDF contains 204 pages.)
Resumo:
Executive Summary: Observations show that warming of the climate is unequivocal. The global warming observed over the past 50 years is due primarily to human-induced emissions of heat-trapping gases. These emissions come mainly from the burning of fossil fuels (coal, oil, and gas), with important contributions from the clearing of forests, agricultural practices, and other activities. Warming over this century is projected to be considerably greater than over the last century. The global average temperature since 1900 has risen by about 1.5ºF. By 2100, it is projected to rise another 2 to 11.5ºF. The U.S. average temperature has risen by a comparable amount and is very likely to rise more than the global average over this century, with some variation from place to place. Several factors will determine future temperature increases. Increases at the lower end of this range are more likely if global heat-trapping gas emissions are cut substantially. If emissions continue to rise at or near current rates, temperature increases are more likely to be near the upper end of the range. Volcanic eruptions or other natural variations could temporarily counteract some of the human-induced warming, slowing the rise in global temperature, but these effects would only last a few years. Reducing emissions of carbon dioxide would lessen warming over this century and beyond. Sizable early cuts in emissions would significantly reduce the pace and the overall amount of climate change. Earlier cuts in emissions would have a greater effect in reducing climate change than comparable reductions made later. In addition, reducing emissions of some shorter-lived heat-trapping gases, such as methane, and some types of particles, such as soot, would begin to reduce warming within weeks to decades. Climate-related changes have already been observed globally and in the United States. These include increases in air and water temperatures, reduced frost days, increased frequency and intensity of heavy downpours, a rise in sea level, and reduced snow cover, glaciers, permafrost, and sea ice. A longer ice-free period on lakes and rivers, lengthening of the growing season, and increased water vapor in the atmosphere have also been observed. Over the past 30 years, temperatures have risen faster in winter than in any other season, with average winter temperatures in the Midwest and northern Great Plains increasing more than 7ºF. Some of the changes have been faster than previous assessments had suggested. These climate-related changes are expected to continue while new ones develop. Likely future changes for the United States and surrounding coastal waters include more intense hurricanes with related increases in wind, rain, and storm surges (but not necessarily an increase in the number of these storms that make landfall), as well as drier conditions in the Southwest and Caribbean. These changes will affect human health, water supply, agriculture, coastal areas, and many other aspects of society and the natural environment. This report synthesizes information from a wide variety of scientific assessments (see page 7) and recently published research to summarize what is known about the observed and projected consequences of climate change on the United States. It combines analysis of impacts on various sectors such as energy, water, and transportation at the national level with an assessment of key impacts on specific regions of the United States. For example, sea-level rise will increase risks of erosion, storm surge damage, and flooding for coastal communities, especially in the Southeast and parts of Alaska. Reduced snowpack and earlier snow melt will alter the timing and amount of water supplies, posing significant challenges for water resource management in the West. (PDF contains 196 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
The biomass yields of duck week (Lemna minor(L) was monitored in hydroponic media prepared by variously extracting 0.50, 1.00 and 2.00g of dried chicken manure per liter of city water (tap water) supply. The culture media consisting of aqueous extract of the various manure treatments were made up to 12 liters in all cases with tap water as control. Plastic baths of 25 liters capacity with 0.71 super(m2) surface area were used as culture facility. Each bath was stocked at a density of 30g super(m-2) with fresh weed samples (i.e 21.30g/bath). Maximum yields were obtained at all treatment levels and control on day 3 and based on the highest yield of 0.37gm super(-2)d super(-1) (dry matter) obtained at 1.00gL manure treatment which was however not significantly higher (P>0.05) than the 0.36gm super(-2)d super(-1) (dry matter) at 0.05gl super(-1) media manure content, an average manure level of 0.75l super(-1) was selected and used to determine the operational plant density. Thus fresh weights of 30 to 300gm super(-2) was grown in triplicate at 30g intervals for a period of 3 days. A regression equation of Y=2.6720+0.0021x with a corresponding maximum density or operational plant density of 266gm super(-2) and yield of 0.98gm super(-2), d super(-1) (dry matter) were obtained. Further growth trials were carried out at the operational density and manure levels of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00gl super(-1) media manure concentration giving a significantly higher yield (P<0.05) of 17gm super(-2), d super(-1) (dry matter). This yield was however doubled to between 2.21 and 2.24gm super(-2) d super(-1) (equivalent to 7.96 to 8.06mt.ha-1, Yr-1 dry matter on extrapolation) if 25% and 75% respectively of the total weed cover were harvested daily within the experimental period. The role of some dissolved plant nutrients (DPN) were also discussed
Resumo:
Research has proven that Shoreline Erosion is caused by excess water contained within the shore face. This Research presents an opportunity to control erosion by managing the near shore water table. Our Research on Bogue Banks North Carolina suggests that our buildings and other impervious surfaces collect and concentrate water from storm rain runoff into the surface water table and within the critical beach front water exit point. Presently our Potable Fresh Water is supplied from deep wells located beneath an impervious layer of Marl. After our use, the Waste water is drained into the Surface Aquifer, the combined waste and storm rain water raises the Surface Aquifer water table and produces Erosion. The Deep Aquifers presently supplying our Potable Water have an unknown recharge rate, with increasing reports of Salt Water intrusion. We believe our Vital Fresh water supply system should be modified to supply Reverse Osmosis treatment plants from shallow wells. This will lower the Surface Water Table. These Shallow wells, either horizontal or vertical, might be located within the beach front, adjacent to high erosion risk properties. Beach Drains and Reverse Osmosis Water systems are new and proven technologies. By combining these technologies we can reduce or reverse Shore Erosion, ensure a safe Potable Water supply, reduce requirements for periodic beach nourishment, reduce taxes and protect our property well into the Future. (PDF contains 5 pages)
Resumo:
There are over 2,300 lakes over 1 km2 in China (total area 80 000 km2). In addition there are approximately 87 000 reservoirs with a storage capacity of 413 billion m3. These form the main supply of drinking water as well as water for industrial and agricultural production and aquaculture. Because of a lack of understanding of the frailty of lake ecosystems and poor environmental awareness, human activities have greatly affected freshwater systems. This article focuses on the problems of one water supply reservoir, Dalangdian Reservoir, and considers options for improving its management. Dalangdian Reservoir is described and occurrence of algal genera given. The authors conclude with remarks on the future of the Dalangdian Reservoir.
Resumo:
How to regulate phytoplankton growth in water supply reservoirs has continued to occupy managers and strategists for some fifty years or so, now, and mathematical models have always featured in their design and operational constraints. In recent years, rather more sophisticated simulation models have begun to be available and these, ideally, purport to provide the manager with improved forecasting of plankton blooms, the likely species and the sort of decision support that might permit management choices to be selected with increased confidence. This account describes the adaptation and application of one such model, PROTECH (Phytoplankton RespOnses To Environmental CHange) to the problems of plankton growth in reservoirs. This article supposes no background knowledge of the main algal types; neither does it attempt to catalogue the problems that their abundance may cause in lakes and reservoirs.
Resumo:
The Mediterranean region is characterised by a variable climate with most of the rain falling during the winter and frequent summer droughts. Such warm, dry periods are ideal for the growth of large algal blooms that often consist of potentially toxic Cyanobacteria. This makes the management of water for human use particularly challenging in such a climate and it is important to understand how such blooms can be avoided or at least be reduced in size. PROTECH (Phytoplankton RespOnses To Environmental CHange) is a model that simulates the dynamics of different species of phytoplankton populations in lakes and reservoirs. Its distinct advantage over similar models is its ability to simulate the relative composition of the algal flora, allowing both quantitative and qualitative conclusions to be drawn e.g. whether Cyanobacteria could be a potential problem. PROTECH has been applied primarily to lakes and reservoirs in northern Europe. Recently, however, the model has been applied to water bodies in lower latitudes, including Australia to a water supply reservoir in the south of Spain, El Gergal. El Gergal is the last in a chain of reservoirs that supply water to the city of Seville. It was brought into service in April 1979 and has a maximum storage volume of 35 000 000 m3. This article summarises the application of PROTECH in order to simulate the following problems: • the effect of a large influx of Ceratium biomass into El Gergal from another reservoir • the effect of using alternative water sources instead of the Guadalquivir River (used occasionally to raise water levels in El Gergal) • the effect of installing tertiary sewage treatment on the Cala River • the effect of simulated drought conditions on phytoplankton in the reservoir.
Resumo:
Three ponds were chosen for this study. The two lower ones were of 2 - 4 hectares in area, the depth of the littoral zone was 2.5 - 3 metres at the time of maximum flooding and the mud which covered the floor of the ponds was homogeneous and autochthonous in nature with very few vegetable remnants. The ponds which were originally set up in 1950. were intended for water supply and populated with Crucian Carp (for human consumption). A survey was done in the ponds in order to establish number and biomass of Tendipes semireductus. The author concludes that in these ponds T.semireductus has 2-3 generations per year.
Resumo:
The physical effects of river regulation in the U.K. by impoundments have attracted most attention from hydrologists and engineers concerned with predicting and maintaining discharge regimes for water supply. Grimshaw & Lewin (1980) suggested two basic methods to investigate the effects of regulation on suspended sediment discharge: (i) Compare the river load before and after reservoir construction, and (ii) adopt a paired catchment approach. The former method assumes stationarity of process in the natural system. The latter method, involving selecting two adjacent catchments of similar physical attributes, one regulated and one unregulated, assumes constancy of process spatially. In this report both approaches are adopted to examine the turbidity and suspended sediment concentration regime of the regulated River Tees. Neither approach was entirely satisfactory in the present case. This report examines the discharge and turbidity record consisting of approximately 4000 paired data points, representative of an 11-year post-impoundment period, that has been examined for the River Tees at Broken Scar, Darlington. A small amount of suspended sediment concentration data was also processed: these data are representative of both the pre-impoundment and post-impoundment sediment regime.