26 resultados para Multiple spawns


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea turtles are subjected to involuntary submergence and potential mortality due to incidental capture by the commercial shrimp fishing industry. Despite implementation of turtle excluder devices (TEDs) to reduce at-sea mortality, dead stranded turtles continue to be found in near-record numbers along the coasts of the western Atlantic Ocean and northern Gulf of Mexico. Although this mortality may be due to an increase in the number of turtles available to strand, one alternative explanation is that sea turtles are repetitively submerged (as one fishing vessel follows the path of another) in legal TEDs. In the present study, laboratory and field investigations were undertaken to examine the physiological effects of multiple submergence of loggerhead sea turtles (Caretta caretta). Turtles in the laboratory study were confined during the submersion episodes, whereas under field conditions, turtles were released directly into TED-equipped commercial fishing nets. Under laboratory and field conditions, pre- and postsubmergence blood samples were collected from turtles submerged three times at 7.5 min per episode with an in-water rest interval of 10, 42, or 180 min between submergences. Analyses of pre- and postsubmergence blood samples revealed that the initial submergence produced a severe and pronounced metabolic and respiratory acidosis in all turtles. Successive submergences produced significant changes in blood pH, Pco2, and lactate, although the magnitude of the acid-base imbalance was substantially reduced as the number of submergences increased. In addition, increasing the interval between successive submergences permitted greater recovery of blood homeostasis. No turtles died during these studies. Taken together, these data suggest that repetitive sub-mergence of sea turtles in TEDs would not significantly affect their survival potential provided that the animal has an adequate rest interval at the surface between successive submergences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples of the commercially and recreationally important West Australian dhufish (Glaucosoma hebraicum) were obtained from the lower west coast of Australia by a variety of methods. Fish <300 mm TL were caught over flat, hard substrata and low-lying limestone reefs, whereas larger fish were caught over larger limestone and coral reef formations. Maximum total lengths, weights, and ages were 981 mm, 15.3 kg, and 39 years, respectively, for females and 1120 mm, 23.2 kg, and 41 years, respectively, for males. The von Bertalanffy growth curves for females and males were significantly different. The values for L∞, k, and t0 in the von Bertalanffy growth equations were 929 mm, 0.111/year, and –0.141 years, respectively, for females, and 1025 mm, 0.111/year, and –0.052 years, respectively, for males. Preliminary estimates of total mortality indicated that G. hebraicum is now subjected to a level of fishing pressure that must be of concern to fishery managers. Glaucosoma hebraicum, which spawns between November and April and predominantly between December and March, breeds at a wide range of depths and is a multiple spawner. The L50’s for females and males at first maturity, i.e. 301 and 320 mm, respectively, were attained by about the end of the third year of life and are well below the minimum legal length (MLL) of 500 mm. Because females and males did not reach the MLL until the end of their seventh and sixth years of life, respectively, they would have had, on average, the opportunity of spawning during four and three spawning seasons, respectively, before they reached the MLL. However, because G. hebraicum caught in water depths >40 m typically die upon release, a MLL is of limited use for conserving this species. Alternative approaches, such as restricting fishing activity in highly fished areas, reducing daily bag limits for recreational fishermen, introducing quotas or revising specific details of certain commercial hand-line licences (or doing both) are more likely to provide effective conservation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine mammal diet is typically characterized by identifying fish otoliths and cephalopod beaks retrieved from stomachs and fecal material (scats). The use and applicability of these techniques has been the matter of some debate given inherent biases associated with the method. Recent attempts to identify prey using skeletal remains in addition to beaks and otoliths are an improvement; however, difficulties incorporating these data into quantitative analyses have limited results for descriptive analyses such as frequency of occurrence. We attempted to characterize harbor seal (Phoca vitulina) diet in an area where seals co-occur with several salmon species, some endangered and all managed by state or federal agencies, or both. Although diet was extremely variable within sampling date, season, year, and between years, the frequency and number of individual prey were at least two times greater for most taxa when prey structures in addition to otoliths were identified. Estimating prey mass in addition to frequency and number resulted in an extremely different relative importance of prey in harbor seal diet. These data analyses are a necessary step in generating estimates of the size, total number, and annual biomass of a prey species eaten by pinnipeds for inclusion in fisheries management plans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Pluvial Lake Estancia in central New Mexico experienced large and rapid fluctuations in surface area and elevation during the build-up to and termination of the last glacial maximum (LGM). Due to continuous groundwater discharge, a minimum pool covering about 400 square kilometers was maintained in the central basin until about 12,000 years ago, ensuring a continuous depositional sequence even during low stands of the lake. ... The sensitive response to fluctuations in climate by several independent proxies at Estancia show that transport of Pacific moisture over western North America changed dramatically during the last Ice Age, perhaps comparable to the large and rapid changes in climate documented from high-latitude ice and North Atlantic marine sediments for the LCM and its transitions.