43 resultados para Mercury, Screen printed electrode, Burkina Faso, Pollution, Groundwater
Resumo:
The Biscayne Bay Benthic Sampling Program was divided into two phases. In Phase I, sixty sampling stations were established in Biscayne Bay (including Dumfoundling Bay and Card Sound) representing diverse habitats. The stations were visited in the wet season (late fall of 1981) and in the dry season (midwinter of 1982). At each station certain abiotic conditions were measured or estimated. These included depth, sources of freshwater inflow and pollution, bottom characteristics, current direction and speed, surface and bottom temperature, salinity and dissolved oxygen, and water clarity was estimated with a secchi disk. Seagrass blades and macroalgae were counted in a 0.1-m2 grid placed so as to best represent the bottom community within a 50-foot radius. Underwater 35-mm photographs were made of the bottom using flash apparatus. Benthic samples were collected using a petite Ponar dredge. These samples were washed through a 5-mm mesh screen, fixed in formalin in the field, and later sorted and identified by experts to a pre-agreed taxonomic level. During the wet season sampling period, a nonquantitative one-meter wide trawl was made of the epibenthic community. These samples were also washed, fixed, sorted and identified. During the dry season sampling period, sediment cores were collected at each station not located on bare rock. These cores were analyzed for sediment size and organic composition by personnel of the University of Miami. Data resulting from the sampling were entered into a computer. These data were subjected to cluster analyses, Shannon-Weaver diversity analysis, multiple regression analysis of variance and covariance, and factor analysis. In Phase II of the program, fifteen stations were selected from among the sixty of Phase I. These stations were sampled quarterly. At each quarter, five Petite Ponar dredge samples were collected from each station. As in Phase I, observations and measurements, including seagrass blade counts, were made at each station. In Phase II, polychaete specimens collected were given to a separate contractor for analysis to the species level. These analyses included mean, standard deviation, coefficient of dispersion, percent of total, and numeric rank for each organism in each station as well as number of species, Shannon-Weaver taxa diversity, and dominance (the compliment of Simpson's Index) for each station. Multiple regression analysis of variance and covariance, and factor analysis were applied to the data to determine effect of abiotic factors measured at each station. (PDF contains 96 pages)
Resumo:
The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)
Resumo:
Aquaculture depends largely upon a good aquatic environment. The quality of the aquatic medium determines success to a large extent in aquaculture. The medium is particularly vulnerable to excessive abstraction (i.e surface or groundwater) and contamination from a range of sources (industrial, agricultural or domestic) as well as risks of self-pollution. Environmental management options proffered so far include: improvements in farming performance (especially related to feed and feeding strategies, stocking densities, water quality management, disease prevention and control, use of chemicals, etc.) and in the selection of sites and culturable species, treatment of effluents, sensitivity of recipient waters and enforcement of environmental regulations and guidelines specific to the culture system. There are presently conceptual frameworks for aquatic environment management backed by legal administrative tools to create or enforce rational system for water management, fisheries and aquaculture development strengthened by adaptive institutionalisation
Resumo:
The Vancouver Lake Pilot Dredge Study revealed concentrations of certain chemicals which could be of concern: the metals copper, zinc and mercury and the pesticides lindane and aldrin were found in significant amounts. (PDF contains 1 page)
Resumo:
Trace metals constitute a major form of water pollutant that can adversely affect fish production. The potentially toxic metals have been identified as lead, zinc, copper, arsenic, antimony, mercury beryllium, barium, cadmium, chromium, nickel, selenium among others. Preliminary laboratory studies have been directed to the determination of traces of lead in the aquatic biota and its toxicity. There are indications that the levels reported in effluents from some of the industries may be above the tolerant limits of local fish species and organisms that make up their food. Metal pollution could become a serious problem to freshwater fisheries in the future as a result of increasing urbanization and industrialization, unless efforts are made to prevent it
Resumo:
The production and productivity of a water body is largely dependent on its quality. One major source of water pollution is from the agrochemicals from nearby farmlands. The quality of water in the Obafemi Awolowo University Teaching and Research Farm Reservoir (Ile-Ife, Nigeria) was monitored between October, 1993 and March, 1994. Structured questionnaires were administered to obtain information on the types of agrochemicals in use on the farm. Water samples were collected fortnightly for analyses of the physico-chemical parameters and ionic content of the water. Investigation revealed that 21 agrochemicals had been in use on the farm. The physico-chemical parameters of the water showed that the water was very poor in nutrient. The high concentration of ammonium ion contents of the water shows an indication that the residues of certain agrochemicals got into the water to pollute it. Agrochemicals should be used with great caution on farmlands especially in areas close to water bodies from which man obtains fish and other proteinous foods. This paper also suggests a regular monitoring of water quality of reservoirs in order to pick the earliest signs of pollution
Resumo:
River Kubanni, a major tributary of River Galma, receives both organic and inorganic wastes through run-offs and seepage from residential and agricultural areas of Tundun-Wada, Zaria. Water and phytoplankton samples were collected once a month from three stations on a stretch of the river, for eight months (February, 1994-0ctober, 1994). The physico-chemical parameters and phytoplankton composition were determined and correlated to one another. The distribution and composition of phytoplankton species are affected by variations through fluctuations in environmental variables such as temperature, velocity, transparency, pH, dissolved Oxygen, total alkalinity, total hardness, electrical conductivity and total dissolved matter. Highest dissolved oxygen concentration in February coincided with the minimum water temperature due to the cool harmattan winds. Low alkalinity resulted in low phytoplankton productivity while a rise in total dissolved matter resulted in increase in electrical conductivity and high phytoplankton productivity. The presence of Oscillatoria sp and Euglena sp in station 2 and 3 are indicative of organic pollution in these stations. However, the river stretch is suitable for fish production with respect to water hardness and pH
Resumo:
Development pressure throughout the coastal areas of the United States continues to build, particularly in the southeast (Allen and Lu 2003, Crossett et al. 2004). It is well known that development alters watershed hydrology: as land becomes covered with surfaces impervious to rain, water is redirected from groundwater recharge and evapotranspiration to stormwater runoff, and as the area of impervious cover increases, so does the volume and rate of runoff (Schueler 1994, Corbett et al. 1997). Pollutants accumulate on impervious surfaces, and the increased runoff with urbanization is a leading cause of nonpoint source pollution (USEPA 2002). Sediment, chemicals, bacteria, viruses, and other pollutants are carried into receiving water bodies, resulting in degraded water quality (Holland et al. 2004, Sanger et al. 2008). (PDF contains 5 pages)
Resumo:
The Azraq oasis lies in the Jordanian desert, about 85 km east of Amman. In this brief paper the author summarises his observations from a visit to the oasis in 1991, discusses the effects of pumping groundwater from the oasis to Amman and presents results from a plankton survey.
Resumo:
Fundamental changes in the management of water resources in Portugal are now evolving. Five regional organisations termed Administracaos de Regiao Hidrographic (ARH), will be created to manage water resources within their respective geographical areas. These areas will be catchment based. As a fore-runner to the implementation of the five ARH's a foundation project has been established within the Direcao-Geral do Recursos Naturais to examine the practical implications of the new system. This project has been divided into a number of sub-projects and complementary projects to include the Tejo complementary project. The Tejo complementary project is the focus of this report. The report is to advise on the role of biology in the proposed ARH, to establish priorities for biological studies within the present Projecto de Gestao Integrada dos Recursos Hidricos da Bacia Hidrografica do Rio Tejo (PGIRH/T) and to assist with the planning of laboratory facilities for biology at the new PGIRH/T laboratory at Alges, Lisboa.
Resumo:
Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic CYP1A induction has been used extensively and successfully as a biomarker of organic contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited inducibility and some potential for biomarker application is indicated. Stimulation of reactive oxygen species (ROS) production is another potential mechanism of organic contaminant-mediated DNA and other damage in aquatic organisms. A combination of antioxidant (enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) measurements may have potential as a biomarker of organic contaminant exposure (particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher order deleterious effects, including cancer and other aspects of animal fitness.
Resumo:
This article presents the results of three surveys, which were undertaken in order to estimate the levels of organic and bacterial pollutions of the Ebrié lagoon banks in the urban area of Abidjan.
Resumo:
The total coliforms, fecal coliforms and fecal streptococci were counted over 1 year at 33 stations in the Ebrié Lagoon near Abidjan (Ivory Coast). Most of the waters show high numbers of bacteria, (D category of the American standards). For the sea-beaches, high numbers of fecal germs are found where the human population is abundant.
Resumo:
Details are presented of a bacteriological study in Ebrié Lagoon (Abidjan-Côte d'Ivoire) conducted during Oct-Dec 1974. Sampling sites are shown, and estimated and confirmed values for coliforms are given. The significance of the values obtained is briefly discussed, but further important factors, such as meteorological conditions and state of the sea, need clarification before definite conclusions can be made.