262 resultados para Marine pollution.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last several years, concern has increased about the amount of man-made materials lost or discarded at sea and the potential impacts to the environment. The scope of the problem depends on the amounts and types of debris. One problem in making a regional comparison of debris is the lack of a standard methodology. The objective of this manual is to discuss designs and methodologies for assessment studies of marine debris. This manual has been written for managers, researchers, and others who are just entering this area of study and who seek guidance in designing marine debris surveys. Active researchers will be able to use this manual along with applicable references herein as a source for design improvement. To this end, the authors have synthesized their work and reviewed survey techniques that have been used in the past for assessing marine debris, such as sighting surveys, beach surveys, and trawl surveys, and have considered new methods (e.g., aerial photography). All techniques have been put into a general survey planning framework to assist in developing different marine debris surveys. (PDF file contains 100 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 186 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 134 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was started by a proposal made during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program are desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communications and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy coordinative body;' administration staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations.(PDF file contains 37 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Cayman Islands we are enriched with a wonderful natural environment. In this Green Guide to our Marine Environment we hope to show you how all of our lives on these three magical islands are intimately connected to the land and the sea that surrounds it. Like many of our Caribbean neighbours, a large proportion of our economy depends on reef-based fishing, diving and tourism. The beauty of our coral reefs, our beaches and our lagoons is that it is part of our heritage, and it draws many thousands of overseas visitors to our shores. It is our responsibility, as stakeholders sharing this beautiful environment, to do what we can to minimise our impact upon it. Ogier has sponsored the Green Guide, and through this publication, is helping us to preserve our natural and cultural heritage.... [PDF contains 32 pages]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic contaminants are readily bioaccumulated by aquatic organisms. Exposure to and toxic effects of contaminants can be measured in terms of the biochemical responses of the organisms (i.e. molecular biomarkers). The hepatic biotransformation enzyme cytochrome P4501A (CYP1A) in vertebrates is specifically induced by organic contaminants such as aromatic hydrocarbons, PCBs and dioxins, and is involved in chemical carcinogenesis via catalysis of the covalent binding of organic contaminants to DNA (DNA-adducts). Hepatic CYP1A induction has been used extensively and successfully as a biomarker of organic contaminant exposure in fish. Fewer but equally encouraging studies in fish have used hepatic bulky, hydrophobic DNA-adducts as biomarkers of organic contaminant damage. Much less is known of the situation in marine invertebrates, but a CYPlA-like enzyme with limited inducibility and some potential for biomarker application is indicated. Stimulation of reactive oxygen species (ROS) production is another potential mechanism of organic contaminant-mediated DNA and other damage in aquatic organisms. A combination of antioxidant (enzymes, scavengers) and pro-oxidant (oxidised DNA bases, lipid peroxidation) measurements may have potential as a biomarker of organic contaminant exposure (particularly those chemicals which do not induce CYP1A) and/or oxidative stress, but more studies are required. Both CYP1A- and ROS-mediated toxicity are indicated to result in higher order deleterious effects, including cancer and other aspects of animal fitness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trace metal analysis of 23 species of common Pacific Coast marine foods revealed high cadmium values for Bent-nosed clams (Macoma nasuta), Bay mussels (Mytilus edulis), Bay oysters (Osrtrea lurida), Pacific oysters (Crassostrea gigas), and Littleneck clams (Protothaca staminea). Metals were found to concentrate in the gills, heart, and visceral mass of all 10 species of bivalve mollusks examined. Swordfish (Xiphias gladius) and Salmon (Oncorhynchus tshawytscha) demonstrated the highest cadmium values for fish flesh.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mission of NOAA’s National Marine Sanctuary Program (NMSP) is to serve as the trustee for a system of marine protected areas, to conserve, protect, and enhance their biodiversity, ecological integrity, and cultural legacy while facilitating compatible uses. Since 1972, thirteen National Marine Sanctuaries, representing a wide variety of ocean environments, have been established, each with management goals tuned to their unique diversity. Extending from Cape Ann to Cape Cod across the mouth of Massachusetts Bay, Stellwagen Bank National Marine Sanctuary (NMS) encompasses 2,181 square kilometers of highly productive, diverse, and culturally unique Federal waters. As a result of its varied seafloor topography, oceanographic conditions, and high primary productivity, Stellwagen Bank NMS is utilized by diverse assemblages of seabirds, marine mammals, invertebrates, and fish species, as well as containing a number of maritime heritage resources. Furthermore, it is a region of cultural significance, highlighted by the recent discovery of several historic shipwrecks. Officially designated in 1992, Stellwagen Bank became the Nation’s twelfth National Marine Sanctuary in order to protect these and other unique biological, geological, oceanographic, and cultural features of the region. The Stellwagen Bank NMS is in the midst of its first management plan review since designation. The management plan review process, required by law, is designed to evaluate, enhance, and guide the development of future research efforts, education and outreach, and the management approaches used by Sanctuaries. Given the ecological and physical complexity of Stellwagen Bank NMS, burgeoning anthropogenic impacts to the region, and competing human and biological uses, the review process was challenged to assimilate and analyze the wealth of existing scientific knowledge in a framework which could enhance management decision-making. Unquestionably, the Gulf of Maine, Massachusetts Bay, and Stellwagen Bank-proper are extremely well studied systems, and in many regards, the scientific information available greatly exceeds that which is available for other Sanctuaries. However, the propensity of scientific information reinforces the need to utilize a comprehensive analytical approach to synthesize and explore linkages between disparate information on physical, biological, and chemical processes, while identifying topics needing further study. Given this requirement, a partnership was established between NOAA’s National Marine Sanctuary Program (NMSP) and the National Centers for Coastal Ocean Science (NCCOS) so as to leverage existing NOAA technical expertise to assist the Sanctuary in developing additional ecological assessment products which would benefit the management plan review process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1999, the Chesapeake Bay Program completed a survey of existing data on chemical contaminants and the potential for bioeffects in 38 tidal river systems of Chesapeake Bay. This review led to the identification of 20 areas for which there were insufficient data to adequately characterize the potential for contaminant bioeffects on the Bay’s living resources. The goal of the present study was to estimate the current status of ecological condition in five of these areas and thus help to complete the overall toxics inventory for the Bay. These five systems included the Chester River, Nanticoke River, Pocomoke River, Lower Mobjack Bay (Poquosin and Back Rivers) and the South and Rhode Rivers. This study utilized a Sediment Quality Triad (SQT) approach in combination with additional water-column contaminant analysis to allow for a “weight of evidence” assessment of environmental condition. A total of 60 stations distributed among the five systems, using a probabilistic stratified random design, were sampled during the summer of 2004 to allow for synoptic measures of sediment contamination, sediment toxicity, and benthic condition. Upon completion of all analyses, stations were assigned to one of four categories based on the three legs of the triad. Stations with high sediment quality had no hits on any of the three legs of the triad; those with moderate quality had one hit; those with marginal quality had two hits; and those with poor quality had hits for all three legs of the triad. The Pocomoke River had by far the largest proportion of the total area (97.5%) classified as having high sediment quality, while the Rhode/South system had the highest proportion (11.4%) classified as poor. None of the stations in the Chester River, Nanticoke River, and Lower Mobjack Bay systems were classified as poor. More than 65% of the area of each of the five systems was classified with high to moderate sediment quality. The Rhode/South system had 30.4% of total area classified with marginally to severely poor quality. The results of this study highlight the importance of using multiple indicators and a “weight of evidence” approach to characterize environmental quality and the potential bioeffects of toxic contaminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological innovation has made it possible to grow marine finfish in the coastal and open ocean. Along with this opportunity comes environmental risk. As a federal agency charged with stewardship of the nation’s marine resources, the National Oceanic and Atmospheric Administration (NOAA) requires tools to evaluate the benefits and risks that aquaculture poses in the marine environment, to implement policies and regulations which safeguard our marine and coastal ecosystems, and to inform production designs and operational procedures compatible with marine stewardship. There is an opportunity to apply the best available science and globally proven best management practices to regulate and guide a sustainable United States (U.S.) marine finfish farming aquaculture industry. There are strong economic incentives to develop this industry, and doing so in an environmentally responsible way is possible if stakeholders, the public and regulatory agencies have a clear understanding of the relative risks to the environment and the feasible solutions to minimize, manage or eliminate those risks. This report spans many of the environmental challenges that marine finfish aquaculture faces. We believe that it will serve as a useful tool to those interested in and responsible for the industry and safeguarding the health, productivity and resilience of our marine ecosystems. This report aims to provide a comprehensive review of some predominant environmental risks that marine fish cage culture aquaculture, as it is currently conducted, poses in the marine environment and designs and practices now in use to address these environmental risks in the U.S. and elsewhere. Today’s finfish aquaculture industry has learned, adapted and improved to lessen or eliminate impacts to the marine habitats in which it operates. What progress has been made? What has been learned? How have practices changed and what are the results in terms of water quality, benthic, and other environmental effects? To answer these questions we conducted a critical review of the large body of scientific work published since 2000 on the environmental impacts of marine finfish aquaculture around the world. Our report includes results, findings and recommendations from over 420 papers, primarily from peer-reviewed professional journals. This report provides a broad overview of the twenty-first century marine finfish aquaculture industry, with a targeted focus on potential impacts to water quality, sediment chemistry, benthic communities, marine life and sensitive habitats. Other environmental issues including fish health, genetic issues, and feed formulation were beyond the scope of this report and are being addressed in other initiatives and reports. Also absent is detailed information about complex computer simulations that are used to model discharge, assimilation and accumulation of nutrient waste from farms. These tools are instrumental for siting and managing farms, and a comparative analysis of these models is underway by NOAA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ecological integrity of coral reef ecosystems in the U.S. Caribbean is widely considered to have deteriorated in the last three decades due to a range of threats and stressors from both human and non-human processes Rothenberger 2008, Wilkinson 2008). In response to the threats to Caribbean coral reef ecosystems and other regions around the world, the United States Government authorized the Coral Reef Conservation Act of 2000 to: (1) preserve, sustain, and restore the condition of coral reef ecosystems; (2) promote the wise management and sustainable use of coral reef ecosystems to benefit local communities and the Nation; and (3) develop sound scientific information on the condition of coral reef ecosystems and the threats to such ecosystems. The Act also resulted in the formation of a National Coral Reef Action Strategy and a Coral Reef Conservation Program. The Action Strategy (Goal 2 of Action Theme 1) outlined the importance of monitoring and assessing coral reef health as a mechanism toward reducing many threats to these ecosystems. Monitoring was considered of high importance in addressing impacts from climate change; disease; overfishing; destructive fishing practices; habitat destruction; invasive species; coastal development; coastal pollution; sedimentation/runoff and overuse from tourism. The strategy states that successful coral reef ecosystem conservation requires adaptive management that responds quickly to changing environmental conditions. This, in turn, depends on monitoring programs that track trends in coral reef ecosystem health and reveal patterns in their condition before irreparable harm occurs. As such, monitoring plays a vital role in guiding and supporting the establishment of complex or potentially controversial management strategies such as no-take ecological reserves, fishing gear restrictions, or habitat restoration, by documenting the impacts of gaps in existing management schemes and illustrating the effectiveness of new measures over time. Long-term monitoring is also required to determine the effectiveness of various management strategies to conserve and enhance coral reef ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the 1940s, portions of the Island of Vieques, Puerto Rico have been used by the United States Navy (USN) as an ammunition support detachment and bombing and maneuver training range. In April 2001, the USN began phasing out military activities on the island and transferring military property to the U.S. Department of the Interior, the Municipality of Vieques, and the Puerto Rico Conservation Trust. A small number of studies have been commissioned by the USN in the past few decades to assess selected components of the coral reef ecosystem surrounding the island; however, these studies were generally of limited geographic scope and short duration. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with NOAA’s Office of Response and Restoration (OR&R) and other local and regional experts, conducted a more comprehensive characterization of coral reef ecosystems, contaminants, and nutrient distribution patterns around Vieques. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems in Vieques and other locations in the region. This characterization of Vieques’ marine ecosystems consists of a two part series. First, available information on reefs, fish, birds, seagrasses, turtles, mangroves, climate, geology, currents, and human uses from previous studies was gathered and integrated into a single document comprising Part I of this two part series (Bauer et al. 2008). For Part II of the series, presented in this document, new field studies were conducted to fill data gaps identified in previous studies, to provide an island-wide characterization, and to establish baseline values for the distribution of habitats, nutrients, contaminants, fish, and benthic communities. An important objective underlying this suite of studies was to quantify any differences in the marine areas adjacent to the former and current land-use zoning around Vieques. Specifically of interest was the possibility that either Naval (e.g., practice bombing, munitions storage) or civilian activities (e.g., sewage pollutants, overfishing) could have a negative impact on adjacent marine resources. Measuring conditions at this time and so recently after the land transfer was essential because present conditions are likely to be reflective of past land-use practices. In addition, the assessment will establish benchmark conditions that can be influenced by the potentially dramatic future changes in land-use practices as Vieques considers its development. This report is organized into seven chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the island setting, the former and current land-use zoning, and how the land zoning was used to spatially stratify much of the sampling. Chapter 2 is focused on benthic mapping and provides the methods, accuracy assessment, and results of newly created benthic maps for Vieques. Chapter 3 presents the results of new surveys of fish, marine debris, and reef communities on hardbottom habitats around the island. Chapter 4 presents results of flora and fauna surveys in selected bays and lagoons. Chapter 5 examines the distribution of nutrients in lagoons, inshore, and offshore waters around the island. Chapter 6 is focused on the distribution of chemical contaminants in sediments and corals. Chapter 7 is a brief summary discussion that highlights key findings of the entire suite of studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From the 1940s until 2003, portions of the island of Vieques, a municipality within the Commonwealth of Puerto Rico, were used by the US Navy as a base and training facility, resulting in development and zoning history that differ in comparison to other Caribbean islands. The majority of former Navy lands are now under the jurisdiction of the Department of the Interior’s Fish and Wildlife Service as a National Wildlife Refuge, while a smaller percentage of land was transferred to the Vieques municipality and the Puerto Rico Conservation Trust. An analysis of the distribution and status of the marine resources is timely in light of the recent land transfer, increases in development and tourism, and potential changes in marine zoning around the island. To meet this need, NOAA’s Biogeography Branch, in cooperation with the Office of Response and Restoration and other local and regional partners, conducted Part I of an ecological characterization to integrate historical data and research into a synthesis report. The overall objective of this report is to provide resource managers and residents a comprehensive characterization of the marine resources of Vieques to support research, monitoring, and management. For example, knowledge of the spatial distribution of physical features, habitats, and biological communities is necessary to make an informed decision of the establishment and placement of a marine protected area (MPA). The report is divided into chapters based on the physical environment (e.g., climate, geology, bathymetry), habitat types (e.g., reefs and hardbottom, seagrasses, mangroves) and major faunal groups (e.g. fish, turtles, birds). Each section includes five subsections: an overview, description of the relevant literature, methods of analysis, information on the distribution, status and trends of the particular resource, and a discussion of ecological linkages with other components of the Vieques marine ecosystem and surrounding environment. The physical environment of Vieques is similar to other islands within the Greater Antilles chain, with some distinctions. The warm, tropical climate of Vieques, mediated by the northeasterly trade winds, is characterized by a dry season (December-April) and a rainy season (May-November), the latter of which is characterized by the occasional passage of tropical cyclones. Compared to mainland Puerto Rico, Vieques is characterized by lower elevation, less annual precipitation, and higher average temperatures. The amount of annual precipitation also varies spatially within Vieques, with the western portion of the island receiving higher amounts of rainfall than further east. While the North Equatorial Current dominates the circulation pattern in the Greater Antilles region, small scale current patterns specific to Vieques are not as well characterized. These physical processes are important factors mitigating the distribution and composition of marine benthic habitats around Vieques. In general, the topography of Vieques is characterized by rolling hills. Mt. Pirata, the tallest point at 301 m, is located near the southwest coast. In the absence of island wide sedimentation measurements, information on land cover, slope, precipitation, and soil type were used to estimate relative erosion potential and sediment delivery for each watershed. While slope and precipitation amount are the primary driving factors controlling runoff, land use practices such as urban development, military activity, road construction, and agriculture can increase the delivery of pollution and sediments to coastal waters. Due to the recent land transfer, increased development and tourism is expected, which may result in changes in the input of sediments to the coastal environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hawaii’s coastal marine resources have declined dramatically over the past 100 years due to multiple anthropogenic stressors including overfishing, coastal development, pollution, overuse, invasive species and climate change. It is now becoming evident that ecosystem-based management, in the form of marine protected areas (MPAs), is necessary to conserve biodiversity, maintain viable fisheries, and deliver a broad suite of ecosystem services. Over the past four decades, Hawaii has developed a system of MPAs to conserve and replenish marine resources around the state. These Marine Life Conservation Districts (MLCDs) vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning MPA design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Branch used digital benthic habitat maps coupled with comprehensive ecological studies between 2002 and 2004 to evaluate the efficacy of all existing MLCDs using a spatially-explicit stratified random sampling design. The results from this work have shown that areas fully protected from fishing had higher fish biomass, larger overall fish size, and higher biodiversity than adjacent areas of similar habitat quality. Other key findings demonstrated that top predators and other important fisheries species were more abundant and larger in the MPAs, illustrating the effectiveness of these closures in conserving these populations. Habitat complexity, protected area size and habitat diversity were the major factors in determining effectiveness among MPAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gray’s Reef National Marine Sanctuary (GRNMS) is located 32.4 km offshore of Sapelo Island, Georgia. The ecological importance of this area is related to the transition between tropical and temperate waters, and the existence of a topographically complex system of ledges. Due to its central location, GRNMS can be used as a focal site to study the accumulation and impacts of marine debris on the Atlantic continental shelf offshore of the Southeast United States. Previously, researchers characterized marine debris in GRNMS and reported that incidence of the debris at the limited densely colonized ledge sites was significantly greater than at sand or sparsely colonized live bottom, and is further influenced by the level of boating activity and physiographic characteristics (e.g., ledge height). Information gleaned from the initial marine debris characterization was used to devise a strategy for prioritizing cleanup and monitoring efforts. However, a significant gap in knowledge was the rate of debris accumulation. The primary objective of this study was to select, mark, and perform initial marine debris surveys at permanent monitoring sites within GRNMS to quantify long-term trends in types, abundance, impacts, and accumulation rates of debris. Ledge sites were selected to compare types, abundance, and accumulation rates of marine debris between a) areas of high and low use and b) short and tall ledges. Nine permanent monitoring sites were marked and initially surveyed in 2007/2008. Surveys were conducted within a 50 x 4 m transect for a total survey area of 200 square meters. All debris was removed and detailed information was taken on the types of debris, quantity, and associations with benthic fauna. Information on associations with benthic fauna included degree of entanglement, type of organism with which it is entangled or resting on, degree of fouling, and visible impacts such as tissue abrasions. Sites were re-surveyed approximately one year later to quantify new accumulation. During the initial survey, a total of ten debris items, totaling 16.3 kg in weight, were removed from two monitoring stations, both “tall” sites within the area of high boat use. Year-one accumulation totaled five items and approximately 7 kg in weight. Similar to the initial survey, all debris was found at sites in the area of high boat use. However, in contrast to the initial survey, two of these items were found on medium-height ledges. Removed items included fishing line, leaders, rope, plastic, and fabric. Although items were often encrusted in benthic biota or entangled on the ledge, impacts such as abrasions or other injuries were not observed. During the 2009 monitoring efforts, volunteer divers were trained to conduct the survey. Monitoring protocols were documented for GRNMS staff and included as an appendix of this report to enable long-term monitoring of sites. Additionally, national reconnaissance data (e.g. satellite, radar, aerial surveys) and other information on known fishing locations were examined for patterns of resource use and correlations with debris occurrence patterns. A previous model predicting the density of marine debris based on ledge features and boat use was refined and the results were used to generate a map of predicted debris density for all ledges.