80 resultados para Marine pelagic community


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a report of PICES Working Group 3 (Coastal Pelagic Fishes) for 1993 and the first Annual Report of the Subarctic Gyre Working Group (WG-6). (PDF contains 131 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bibliography is to highlight impacts on fisheries and livelihoods attributed to coral reef marine protected areas in Pacific Island countries and territories. Included in this collection is literature that reports various forms of reef area management practiced in Pacific Island countries: reserves, sanctuaries, permanent or temporary closed areas, community and traditional managed areas. (Document contains 36 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(PDF contains 5 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered a take under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data and additional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation. The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices. Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles of the Western North Atlantic. These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for a Comprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads and leatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Summary: This cruise report is a summary of a field survey conducted within the Stellwagen Bank National Marine Sanctuary (SBNMS), located between Cape Cod and Cape Ann at the mouth of Massachusetts Bay. The survey was conducted June 14 – June 21, 2008 on NOAA Ship NANCY FOSTER Cruise NF-08-09-CCEHBR. Multiple indicators of ecological condition and human dimensions were sampled synoptically at each of 30 stations throughout SBNMS using a random probabilistic sampling design. Samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants (metals, pesticides, PAHs, PCBs, PBDEs) in sediments and target demersal biota; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as depth, salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. In addition to the fish samples that were collected for analysis of chemical contaminants relative to human-health consumption limits, other human-dimension indicators were sampled as well including presence or absence of fishing gear, vessels, surface trash, marine mammals, and noxious sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout SBNMS, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing a few preliminary results and observations are reported here. A final report will be completed once all data have been processed. The results are anticipated to be of value in supporting goals of the SBNMS and National Marine Sanctuary Program aimed at the characterization, protection, and management of sanctuary resources (pursuant to the National Marine Sanctuary Reauthorization Act) as well as a new priority of NCCOS and NOAA to apply Ecosystem Based approaches to the Management of coastal resources (EBM) through Integrated Ecosystem Assessments (IEAs) conducted in various coastal regions of the U.S. including the Northeast Atlantic continental shelf. This was a multi-disciplinary partnership effort made possible by scientists from the following organizations:  NOAA, National Ocean Service (NOS), National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Environmental Health and Biomolecular Research (CCEHBR), Charleston, SC.  U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Atlantic Ecology Division (GED), Narragansett, RI.  U.S. Environmental Protection Agency (EPA), National Health and Environmental Effects Research Laboratory (NHEERL), Gulf Ecology Division (GED), Gulf Breeze, FL.  U.S. Geological Survey (USGS), National Wetlands Research Center, Gulf Breeze Project Office, Gulf Breeze, FL.  NOAA, Office of Marine and Aviation Operations (OMAO), NOAA ship Nancy Foster. (31pp) (PDF contains 58 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Executive Summary: Baseline characterization of resources is an essential part of marine protected area (MPA) management and is critical to inform adaptive management. Gray’s Reef National Marine Sanctuary (GRNMS) currently lacks adequate characterization of several key resources as identified in the 2006 Final Management Plan. The objectives of this characterization were to fulfill this need by characterizing the bottom fish, benthic features, marine debris, and the relationships among them for the different bottom types within the sanctuary: ledges, sparse live bottom, rippled sand, and flat sand. Particular attention was given to characterizing the different ledge types, their fish communities, and the marine debris associated with them given the importance of this bottom type to the sanctuary. The characterization has been divided into four sections. Section 1 provides a brief overview of the project, its relevance to sanctuary needs, methods of site selection, and general field procedures. Section 2 provides the survey methods, results, discussion, and recommendations for monitoring specific to the benthic characterization. Section 3 describes the characterization of marine debris. Section 4 is specific to the characterization of bottom fish. Field surveys were conducted during August 2004, May 2005, and August 2005. A total of 179 surveys were completed over ledge bottom (n=92), sparse live bottom (n=51), flat sand (n=20), and rippled sand (n=16). There were three components to each field survey: fish counting, benthic assessment, and quantification of marine debris. All components occurred within a 25 x 4 m belt transect. Two divers performed the transect at each survey site. One diver was responsible for identification of fish species, size, and abundance using a visual survey. The second diver was responsible for characterization of benthic features using five randomly placed 1 m2 quadrats, measuring ledge height and other benthic structures, and quantifying marine debris within the entire transect. GRNMS is composed of four main bottom types: flat sand, rippled sand, sparsely colonized live bottom, and densely colonized live bottom (ledges). Independent evaluation of the thematic accuracy of the GRNMS benthic map produced by Kendall et al. (2005) revealed high overall accuracy (93%). Most discrepancies between map and diver classification occurred during August 2004 and likely can be attributed to several factors, including actual map or diver errors, and changes in the bottom type due to physical forces. The four bottom types have distinct physical and biological characteristics. Flat and rippled sand bottom types were composed primarily of sand substrate and secondarily shell rubble. Flat sand and rippled sand bottom types were characterized by low percent cover (0-2%) of benthic organisms at all sites. Although the sand bottom types were largely devoid of epifauna, numerous burrows indicate the presence of infaunal organisms. Sparse live bottom and ledges were colonized by macroalgae and numerous invertebrates, including coral, gorgonians, sponges, and “other” benthic species (such as tunicates, anemones, and bryozoans). Ledges and sparse live bottom were similar in terms of diversity (H’) given the level of classification used here. However, percent cover of benthic species, with the exception of gorgonians, was significantly greater on ledge than on sparse live bottom. Percent biotic cover at sparse live bottom ranged from 0.7-26.3%, but was greater than 10% at only 7 out of 51 sites. Colonization on sparse live bottom is likely inhibited by shifting sands, as most sites were covered in a layer of sediment up to several centimeters thick. On ledge bottom type, percent cover ranged from 0.42-100%, with the highest percent cover at ledges in the central and south-central region of GRNMS. Biotic cover on ledges is influenced by local ledge characteristics. Cluster analysis of ledge dimensions (total height, undercut height, undercut width) resulted in three main categories of ledges, which were classified as short, medium, and tall. Median total percent cover was 97.6%, 75.1%, and 17.7% on tall, medium, and short ledges, respectively. Total percent cover and cover of macroalgae, sponges, and other organisms was significantly lower on short ledges compared to medium and tall ledges, but did not vary significantly between medium and tall ledges. Like sparse live bottom, short ledges may be susceptible to burial by sand, however the results indicate that ledge height may only be important to a certain threshold. There are likely other factors not considered here that also influence spatial distribution and community structure (e.g., small scale complexity, ocean currents, differential settlement patterns, and biological interactions). GRNMS is a popular site for recreational fishing and boating, and there has been increased concern about the accumulation of debris in the sanctuary and potential effects on sanctuary resources. Understanding the types, abundance, and distribution of debris is essential to improving debris removal and education efforts. Approximately two-thirds of all observed debris items found during the field surveys were fishing gear, and about half of the fishing related debris was monofilament fishing line. Other fishing related debris included leaders and spear gun parts, and non-gear debris included cans, bottles, and rope. The spatial distribution of debris was concentrated in the center of the sanctuary and was most frequently associated with ledges rather than at other bottom types. Several factors may contribute to this observation. Ledges are often targeted by fishermen due to the association of recreationally important fish species with this bottom type. In addition, ledges are structurally complex and are often densely colonized by biota, providing numerous places for debris to become stuck or entangled. Analysis of observed boat locations indicated that higher boat activity, which is an indication of fishing, occurs in the center of the sanctuary. On ledges, the presence and abundance of debris was significantly related to observed boat density and physiographic features including ledge height, ledge area, and percent cover. While it is likely that most fishing related debris originates from boats inside the sanctuary, preliminary investigation of ocean current data indicate that currents may influence the distribution and local retention of more mobile items. Fish communities at GRNMS are closely linked to benthic habitats. A list of species encountered, probability of occurrence, abundance, and biomass by habitat is provided. Species richness, diversity, composition, abundance, and biomass of fish all showed striking differences depending on bottom type with ledges showing the highest values of nearly all metrics. Species membership was distinctly separated by bottom type as well, although very short, sparsely colonized ledges often had a similar community composition to that of sparse live bottom. Analysis of fish communities at ledges alone indicated that species richness and total abundance of fish were positively related to total percent cover of sessile invertebrates and ledge height. Either ledge attribute was sufficient to result in high abundance or species richness of fish. Fish diversity (H`) was negatively correlated with undercut height due to schools of fish species that utilize ledge undercuts such as Pareques species. Concurrent analysis of ledge types and fish communities indicated that there are five distinct combinations of ledge type and species assemblage. These include, 1) short ledges with little or no undercut that lacked many of the undercut associated species except Urophycis earlii ; 2) tall, heavily colonized, deeply undercut ledges typically with Archosargus probatocephalus, Mycteroperca sp., and Pareques sp.; 3) tall, heavily colonized but less undercut with high occurrence of Lagodon rhomboides and Balistes capriscus; 4) short, heavily colonized ledges typically with Centropristis ocyurus, Halichoeres caudalis, and Stenotomus sp.; and 5) tall, heavily colonized, less undercut typically with Archosargus probatocephalus, Caranx crysos and Seriola sp.. Higher levels of boating activity and presumably fishing pressure did not appear to influence species composition or abundance at the community level although individual species appeared affected. These results indicate that merely knowing the basic characteristics of a ledge such as total height, undercut width, and percent cover of sessile invertebrates would allow good prediction of not only species richness and abundance of fish but also which particular fish species assemblages are likely to occur there. Comparisons with prior studies indicate some major changes in the fish community at GRNMS over the last two decades although the causes of the changes are unknown. Species of interest to recreational fishermen including Centropristis striata, Mycteroperca microlepis, and Mycteroperca phenax were examined in relation to bottom features, areas of assumed high versus low fishing pressure, and spatial dispersion. Both Mycteroperca species were found more frequently when undercut height of ledges was taller. They often were found together in small mixed species groups at ledges in the north central and southwest central regions of the sanctuary. Both had lower mode size and proportion of fish above the fishery size limit in heavily fished areas of the sanctuary (i.e. high boat density) despite the presence of better habitat in that region. Black sea bass, C. striata, occurred at 98% of the ledges surveyed and appeared to be evenly distributed throughout the sanctuary. Abundance was best explained by a positive relationship with percent cover of sessile biota but was also negatively related to presence of either Mycteroperca species. This may be due to predation by the Mycteroperca species or avoidance of sites where they are present by C. striata. Suggestions for monitoring bottom features, marine debris, and bottom fish at GRNMS are provided at the end of each chapter. The present assessment has established quantitative baseline characteristics of many of the key resources and use issues at GRNMS. The methods can be used as a model for future assessments to track the trajectory of GRNMS resources. Belt transects are ideally suited to providing efficient and quantitative assessment of bottom features, debris, and fish at GRNMS. The limited visibility, sensitivity of sessile biota, and linear nature of ledge habitats greatly diminish the utility of other sampling techniques. Ledges should receive the bulk of future characterization effort due to their importance to the sanctuary and high variability in physical structure, benthic composition, and fish assemblages. (PDF contains 107 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty sites were sampled in southern Biscayne Bay and Manatee Bay in December 1999 to determine the extent of toxicity in sediments. Analyses and assays included: pesticides and phenols in seawater; chemical contaminants in sediment; amphipod mortality, HRGS P450, sea urchin sperm fertilization and embryology, MicrotoxTM, MutatoxTM, grass shrimp AChE and juvenile clam mortality assays; sea urchin sperm, amphipod and oyster DNA damage; and benthic community assessment. Sediment sites near the mouth of canals showed evidence of contamination. Contaminant plumes and associated toxicity do not appear to extend seaward of the mouth of the canals in an appreciable manner. Concentrations of contaminants in the sediments in open areas of Biscayne and Manatee Bays are generally low. (PDF contains 140 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One goal of Gray’s Reef National Marine Sanctuary (NMS) is to protect the unique community found within the Sanctuary’s boundaries. An understanding of the ecological interactions, including trophic structure, among these organisms is necessary to realize this goal. Therefore, diet information for 184 fish species was summarized from 113 published studies. Among the fish included are 84 fish species currently known to reside in Gray’s Reef NMS. The locations of these studies ranged from the Atlantic Ocean off the coast of the northeast United States to northern Brazil, the Gulf of Mexico, and the Caribbean. All of the species described in this bibliography occur in the southeast United States and are, therefore, current or potential residents of Gray’s Reef National Marine Sanctuary. Each entry includes the objectives, brief methods, and conclusions of the article. The bibliography is also indexed by species. (PDF contains 64 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(PDF contains 4 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(PDF contains 3 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The communities associated with Mytilus californianus (mussel) beds from 20 geographic sites in southern California were examined. The study areas included six mainland sites - Government Point, Goleta Point, Ventura, Corona del Mar, Carlsbad, and San Diego,and two sites on opposite sides of seven offshore islands - San Miguel Island, Santa Rosa Island, Santa Cruz Island, Anacapa Island, San Nicholas Island, Santa Cruz Island and San Clemente Island. : The mussel communities from all areas contributed to the master species list which now encompasses conservatively, 610 species of animals and 141 species of algae. The most diverse collection came from Cat Rock, Anacapa Island where the mussel beds supported 174 species of invertebrates. The lowest diversity was recorded for mussel beds from Ben Weston, Santa Catalina Island which contained 46 species. In general, the island mussel beds supported a greater diversity of both animals and plants. Mussel community samples were collected from upper and lower intertidal areas occupied by the mussel beds within a locality. Community differences in both composition and abundance were associated with these collections. Overall. community similarity analysis revealed five major patterns which corresponded to characteristic species assemblages occupying the mussel beds from the various geographic areas. The patterns included: (1) clusters of localities which display a north-south geographic pattern with respect to the similarity of their respective mussel communities, (2) a separation of selected island and mainland communities because of dissimilarities in their species composition, (3) differences between mussel communities. on opposite sides of the offshore islands, (4) clusters of species whose highest abundances characterize selected localities, (5) species groups ubiquitous to all mussel beds examined. The results of the community analysis further suggest that predictions can be made delineating the probable mussel community inhabitants of areas not sampled. The species distribution patterns observed appear to correspond in part to the influence of currents and water masses which bear planktonic larvae and impinge on selected localities. The most important mussel bed features associated with community differences were quantitative and qualitative differences in the potential microhabitats. Those features associate~ with greater species diversity include the pore base of coarse fraction shell and rock debris, skewness and kurtosis of the sediment grain-size distributions and mussel bed thickness. Those features associated with lower species diversity included the quantity of tar. and rock and shell debris trapped within the mussel bed. (PDF contains 51 pages)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Larval kelp (Sebastes atrovirens), brown (S. auriculatus), and blackand-yellow (S. chrysomelas) rockfish were reared from known adults, to preflexion stage, nine days after birth for S. chrysomelas, to late postflexion stage for S. atrovirens, and to pelagic juvenile stage for S. auriculatus. Larval S. atrovirens and S. chrysomelas were about 4.6 mm body length (BL) and S. auriculatus about 5.2 mm BL at birth. Both S. atrovirens and S. auriculatus underwent notochord flexion at about 6–9 mm BL. Sebastes atrovirens transform to the pelagic juvenile stage at about 14–16 mm BL and S. auriculatus transformed at ca. 25 mm BL. Early larvae of all three species were characterized by melanistic pigment dorsally on the head, on the gut, on most of the ventral margin of the tail, and in a long series on the dorsal margin of the tail. Larval S. atrovirens and S. auriculatus developed a posterior bar on the tail during the flexion or postflexion stage. In S. atrovirens xanthic pigment resembled the melanistic pattern throughout larval development. Larval S. auriculatus lacked xanthophores except on the head until late preflexion stage, when a pattern much like the melanophore pattern gradually developed. Larval S. chrysomelas had extensive xanthic pigmentation dorsally, but none ventrally, in preflexion stage. All members of the Sebastes subgenus Pteropodus (S. atrovirens, S. auriculatus, S. carnatus, S. caurinus, S. chrysomelas, S. dalli, S. maliger, S. nebulosus, S. rastrelliger) are morphologically similar and all share the basic melanistic pigment pattern described here. Although the three species reared in this study can be distinguished on the basis of xanthic pigmentation, it seems unlikely that it will be possible to reliably identify field-collected larvae to species using traditional morphological and melanistic pigmentation characters. (PDF file contains 36 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The food habits of 20 species of pelagic nekton were investigated from collections made with small-mesh purse seines from 1979-84 off Washington and Oregon. Four species (spiny dogfish, Squalus acanthias; soupfin shark, Galeorhinus zyopterus; blue shark, Prionace glauca; and cutthroat trout, Salmo clarki) were mainly piscivorous. Six species (coho salmon, Oncorhynchus kisutch; chinook salmon, O. tshawytscha; black rockfish, Sebastes melanops; yellowtail rockfish, S. f1avidus; sablefish, Anoplopoma fimbria; and jack mackerel, Trachurus symmetricus) consumed both nektonic and planktonic organisms. The remaining species (market squid, Loligo opalescens; American shad, Alosa sapidissima; Pacific herring, Clupea harengus pallasi; northern anchovy, Engraulis mordax; pink salmon, O. gorbuscha; surf smelt, Hypomesus pretiosus; Pacific hake, Merluccius productus; Pacific saury, Cololabis saira; Pacific mackerel, Scomber japonicus; and medusafish, Icichthys lockingtom) were primarily planktonic feeders. There were substantial interannual, seasonal, and geographic variations in the diets of several species due primarily to changes in prey availability. Juvenile salmonids were not commonly consumed by this assemblage of fishes (PDF file contains 36 pages.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifteen fine-mesh (32-mm mesh) pelagic purse seine surveys were conducted between 1979 and 1984 off the Oregon and Washington coasts. Environmental conditions varied greatly among the years sampled, and even within years, due to variability in upwelling conditions and productivity and the effects of a strong El Nino from late 1982 to the middle of 1984. In the 843 sets made, a total of 115,891 specimens from 69 taxa was collected. Most individuals collected belonged to nine dominant taxa. Seasonal and interannual variations in the abundance and distribution patterns of these dominant taxa are presented in detail. A recurrent group analysis delineated four major groupings of nekton. (PDF file contains 91 pages.)