50 resultados para Maine. Militia.
Resumo:
The National Centers for Coastal Ocean Science (NCCOS) of the National Oceanic and Atmospheric Administration (NOAA) is interested in developing a project to determine the health of estuaries based on the stated or desired uses of society. An estuarine use assessment could complement the National Coastal Assessment, which tracks coastal and estuarine health through a series of environmental indicators. These indicators are used to assign a “score” to each coastal region, with some indicators reflecting the ability of the region to support desired uses such as fishing and swimming. An estuarine use assessment could also provide valuable information to resource managers and other decision-makers as they face decisions about the optimal and most sustainable mix of activities in an estuary. An initial step of an estuarine use assessment would be to define and quantify the desired societal uses of the estuary. Society includes residents living near the estuary or industries relying on the estuary, seasonal residents and tourists that use the estuary on a more limited basis, and the public at-large that may use or value the estuary indirectly. The desired uses may include discrete, visible uses such as swimming, recreational or commercial fishing, and navigation. They also may extend to broader, more intangible uses such as maintaining ecological functions or aesthetic appeal. National legislation such as the Estuary Restoration Act, which promotes and funds the restoration of estuaries in the U.S., reflects the public’s desire for estuaries to retain their ecological structures and functions. This report summarizes a project carried out in 2003 that attempted to quantify the desired human uses of a specific estuary in Maine and to determine current measures of success used by coastal managers in Maine to track the ability of the estuary to support desired uses. Casco Bay was chosen as the spatial embayment for which to delineate uses, and nutrient enrichment was selected as the parameter for confirming assumptions about current measures of outcomes related to uses. The report highlights some of the challenges to completing an estuarine use assessment and offers general recommendations for addressing these challenges.
Resumo:
Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.
Resumo:
Age and growth estimates for the winter skate (Leucoraja ocellata) were estimated from vertebral band counts on 209 fish ranging in size from 145 to 940 mm total length (TL). An index of average percent error (IAPE) of 5.8% suggests that our aging method represents a precise approach to the age assessment of L. ocellata. Marginal increments were significantly different between months (Kruskal-Wallis P<0.001) and a distinct trend of increasing monthly increment growth began in July. Estimates of von Bertalanffy growth parameters suggest that females attain a slightly larger asymptotic TL (L∞=1374 mm) than males (L∞=1218 mm) and grow more slowly (k=0.059 and 0.074, respectively). The oldest ages obtained for the winter skate were 19 years for males and 18 years for females, which corresponded to total lengths of 932 mm and 940 mm, respectively. The results indicate that the winter skate exhibits the characteristics that have made other elasmobranch populations highly susceptible to exploitation by commercial fisheries.
Resumo:
The green sea urchin (Strongylocentrotus droebachiensis) is important to the economy of Maine. It is the state’s fourth largest fishery by value. The fishery has experienced a continuous decline in landings since 1992 because of decreasing stock abundance. Because determining the age of sea urchins is often difficult, a formal stock assessment demands the development of a size-structured population dynamic model. One of the most important components in a size-structured model is a growth-transition matrix. We developed an approach for estimating the growth-transition matrix using von Bertalanffy growth parameters estimated in previous studies of the green sea urchin off Maine. This approach explicitly considers size-specific variations associated with yearly growth increments for these urchins. The proposed growth-transition matrix can be updated readily with new information on growth, which is important because changes in stock abundance and the ecosystem will likely result in changes in sea urchin key life history parameters including growth. This growth-transition matrix can be readily incorporated into the size-structured stock assessment model that has been developed for assessing the green sea urchin stock off Maine.
Resumo:
NMFS bottom trawl survey data were used to describe changes in distribution, abundance, and rates of population change occurring in the Gulf of MaineGeorges Bank herring (Clupea harengus) complex during 1963–98. Herring in the region have fully recovered following severe overfishing during the 1960s and 1970s. Three distinct, but seasonally intermingling components from the Gulf of Maine, Nantucket Shoals (Great South Channel area), and Georges Bank appear to compose the herring resource in the region. Distribution ranges contracted as herring biomass declined in the late 1970s and then the range expanded in the 1990s as herring increased. Analysis of research survey data suggest that herring are currently at high levels of abundance and biomass. All three components of the stock complex, including the Georges Bank component, have recovered to pre-1960s abundance. Survey data support the theory that herring recolonized the Georges Bank region in stages from adjacent components during the late 1980s, most likely from herring spawning in the Gulf of Maine.
Resumo:
This document, Guidance for Benthic Habitat Mapping: An Aerial Photographic Approach, describes proven technology that can be applied in an operational manner by state-level scientists and resource managers. This information is based on the experience gained by NOAA Coastal Services Center staff and state-level cooperators in the production of a series of benthic habitat data sets in Delaware, Florida, Maine, Massachusetts, New York, Rhode Island, the Virgin Islands, and Washington, as well as during Center-sponsored workshops on coral remote sensing and seagrass and aquatic habitat assessment. (PDF contains 39 pages) The original benthic habitat document, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (Dobson et al.), was published by the Department of Commerce in 1995. That document summarized procedures that were to be used by scientists throughout the United States to develop consistent and reliable coastal land cover and benthic habitat information. Advances in technology and new methodologies for generating these data created the need for this updated report, which builds upon the foundation of its predecessor.
Residential Docks and Piers: Inventory of laws, regulations, and policies for the New England region
Resumo:
While the homes threatened by erosion and the developer illegally filling in marshlands are the projects that make the headlines, for many state regulatory programs, it’s the residential docks and piers that take up the most time. When is a dock too long? What about crossing extended property lines? And at what point does a creek have too many docks? There are no easy answers to these questions. At the request of the Georgia Coastal Management Program, the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center published in April 2003 an inventory of residential dock and pier management information for the southeastern U.S. This inventory builds upon that effort and includes five New England states and one municipality: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and the Town of Falmouth, Massachusetts. Federal laws, state laws and regulations, permitting policies, and contact information are presented in a tabular format that is easy to use. (PDF contains 16 pages)
Resumo:
Didemnum sp. A is a colonial ascidian or “sea squirt” of unknown geographic origin. Colonies of Didemnum sp. A were first documented in U.S. waters in 1993 at Damariscotta River, Maine and San Francisco Bay, California. An alarming number of colonies have since been found at several locations in New England and along the West Coast of the contiguous continental United States. Originally believed to be restricted to artificial structures in nearshore habitats, such as ports and marinas, colonies of Didemnum sp. A have also been discovered on a gravel-pavement habitat on Georges Bank at depths of 40-65m. The wide distribution of Didemnum sp. A, the presence of colonies on an important offshore fishing ground, and the negative economic impacts that other species of noninidigenous ascidians have had on aquaculture operations have raised concerns about the potential impacts of Didemnum sp. A. We reviewed the available information on the biology and ecology of Didemnum sp. A and potentially closely related species to examine the environmental and socioeconomic factors that may have influenced the introduction, establishment and spread of Didemnum sp. A in U.S. waters, the potential impacts of this colonial ascidian on other organisms, aquaculture, and marine fisheries, and the possibility that it will spread to other U.S. waters. In addition, we present and discuss potential management objectives for minimizing the impacts and spread of Didemnum sp. A. Concern over the potential for Didemnum sp. A to become invasive stems from ecological traits that it shares with other invasive species, including the ability to overgrow benthic organisms, high reproductive and population growth rates, ability to spread by colony fragmentation, tolerance to a wide range of environmental conditions, apparent scarcity of predators, and the ability to survive in human dominated habitats. At relatively small spatial scales, species of Didemnum and other nonindigenous ascidians have been shown to alter the abundance and composition of benthic assemblages. In addition, the Canadian aquaculture industry has reported that heavy infestations of nonindigenous ascidians result in increased handling and processing costs. Offshore fisheries may also suffer where high densities of Didemnum sp. A may alter the access of commercially important fish species to critical spawning grounds, prey items, and refugia. Because colonial ascidian larvae remain viable for only 12–24hrs, the introduction and spread of Didemnum sp. A across large distances is thought to be predominantly human mediated; hull fouling, aquaculture, and ballast water. Recent studies suggest that colony growth rates decline when temperatures exceed 21 ºC for 7 consecutive days. Similarly, water temperatures above 8 to 10 ºC are necessary for colony growth; however, colonies can survive extended periods of time below this temperature threshold as an unidentified overwintering form. A qualitative analysis of monthly mean nearshore water temperatures suggest that new colonies of Didemnum will continue to be found in the Northeast U.S., California Current, and Gulf of Alaska LMEs. In contrast, water temperatures become less favorable for colony establishment in subarctic, subtropical, and tropical areas to the north and south of Didemnum’s current distribution in cool temperate habitats. We recommend that the Aquatic Nuisance Species Task Force serve as the central management authority to coordinate State and Federal management activities. Five objectives for a Didemnum sp. A management and control program focusing on preventing the spread of Didemnum sp. A to new areas and limiting the impacts of existing populations are discussed. Given the difficulty of eradicating large populations of Didemnum sp. A, developing strategies for limiting the access of Didemnum sp. A to transport vectors and locating newly established colonies are emphasized. (PDF contains 70 pages)
Resumo:
Understanding how well National Marine Sanctuaries and other marine protected areas represent the diversity of species present within and among the biogeographic regions where they occur is essential for assessing their conservation value and identifying gaps in the protection of biological diversity. One of the first steps in any such assessment should be the development of clearly defined and scientifically justified planning boundaries representing distinct oceanographic conditions and faunal assemblages. Here, we propose a set of boundaries for the continental shelf of northeastern North America defined by subdivisions of the Eastern Temperate Province, based on a review and synthesis (i.e. meta-analysis) of the scientific literature. According to this review, the Eastern Temperate Province is generally divided into the Acadian and Virginian Subprovinces. Broad agreement places the Scotian Shelf, Gulf of Maine, and Bay of Fundy within the Acadian Subprovince. The proper association of Georges Bank is less clear; some investigators consider it part of the Acadian and others part of the Virginian. Disparate perspectives emerge from the analysis of different groups of organisms. Further, while some studies suggest a distinction between the Southern New England shelf and the rest of the Mid-Atlantic Bight, others describe the region as a broad transition zone with no unique characteristics of its own. We suggest there exists sufficient evidence to consider the Scotian Shelf, Gulf of Maine, Georges Bank, Southern New England, and Southern Mid-Atlantic Bight as distinct biogeographic regions from a conservation planning perspective, and present a set of proposed mapped boundaries. (PDF contains 23 pages.)
Resumo:
From the mid-1950's to the mid-1960's a series of quantitative surveys of the macrobenthic invertebrate fauna were conducted in the offshore New England region (Maine to Long Island, New York). The surveys were designed to 1) obtain measures of macrobenthic standing crop expressed in terms of density and biomass; 2) determine the taxonomic composition of the fauna (ca. 567 species); 3) map the general features of macrobenthic distribution; and 4) evaluate the fauna's relationships to water depth, bottom type, temperature range, and sediment organic carbon content. A total of 1,076 samples, ranging from 3 to 3,974 m in depth, were obtained and analyzed. The aggregate macrobenthic fauna consists of 44 major taxonomic groups (phyla, classes, orders). A striking fact is that only five of those groups (belonging to four phyla) account for over 80% of both total biomass and number of individuals of the macrobenthos. The five dominant groups are Bivalvia, Annelida, Amphipoda, Echninoidea, and Holothuroidea. Other salient features pertaining to the macrobenthos of the region are the following: substantial differences in quantity exist among different geographic subareas within the region, but with a general trend that both density and biomass increase from northeast to southwest; both density and biomass decrease with increasing depth; the composition of the bottom sediments significantly influences both the kind and quantity of macrobenthic invertebrates, the largest quantities of both measures of abundance occurring in the coarser grained sediments and diminishing with decreasing particle size; areas with marked seasonal changes in water temperature support an abundant and diverse fauna, whereas a uniform temperature regime is associated with a sparse, less diverse fauna; and no detectable trends are evident in the quantitative composition of the macrobenthos in relation to sediment organic carbon content. (PDF file contains 246 pages.)
Resumo:
The broad scale features in the horizontal, vertical, and seasonal distribution of phytoplankton chlorophyll a on the northeast U.S. continental shelf are described based on 57,088 measurements made during 78 oceanographic surveys from 1977 through 1988. Highest mean water column chlorophyll concentration (Chlw,) is usually observed in nearshore areas adjacent to the mouths of the estuaries in the Middle Atlantic Bight (MAB), over the shallow water on Georges Bank, and a small area sampled along the southeast edge of Nantucket Shoals. Lowest Chlw «0.125 ug l-1) is usually restricted to the most seaward stations sampled along the shelf-break and the central deep waters in the Gulf of Maine. There is at least a twofold seasonal variation in phytoplankton biomass in all areas, with highest phytoplankton concentrations (m3) and highest integrated standing stocks (m2) occurring during the winter-spring (WS) bloom, and the lowest during summer, when vertical density stratification is maximal. In most regions, a secondary phytoplankton biomass pulse is evident during convective destratification in fall, usually in October. Fall bloom in some areas of Georges Bank approaches the magnitude of the WS-bloom, but Georges Bank and Middle Atlantic Bight fall blooms are clearly subordinate to WS-blooms. Measurements of chlorophyll in two size-fractions of the phytoplankton, netplankton (>20 um) and nanoplankton «20 um), revealed that the smaller nanoplankton are responsible for most of the phytoplankton biomass on the northeast U.S. shelf. Netplankton tend to be more abundant in nearshore areas of the MAB and shallow water on Georges Bank, where chlorophyll a is usually high; nanoplankton dominate deeper water at the shelf-break and deep water in the Gulf of Maine, where Chlw is usually low. As a general rule, the percent of phytoplankton in the netplankton size-fraction increases with increasing depth below surface and decreases proceeding offshore. There are distinct seasonal and regional patterns in the vertical distribution of chlorophyll a and percent netplankton, as revealed in composite vertical profiles of chlorophyll a constructed for 11 layers of the water column. Subsurface chlorophyll a maxima are ubiquitous during summer in stratified water. Chlorophyll a in the subsurface maximum layer is generally 2-8 times the concentration in the overlying and underlying water and approaches 50 to 75% of the levels observed in surface water during WS-bloom. The distribution of the ratio of the subsurface maximum chlorophyll a to surface chlorophyll a (SSR) during summer parallels the shelfwide pattern for stability, indexed as the difference in density (sigma-t) between 40 m and surface (stability 40. The weakest stability and lowest SSR's are found in shallow tidally-mixed water on Georges Bank; the greatest stability and highest SSR's (8-12:1) are along the mid and outer MAB shelf, over the winter residual water known as the "cold band." On Georges Bank, the distribution of SSR and the stability40 are roughly congruent with the pattern for maximum surface tidal current velocity, with values above 50 cms-1 defining SSR's less than 2:1 and the well-mixed area. Physical factors (bathymetry, vertical mixing by strong tidal currents, and seasonal and regional differences in the intensity and duration of vertical stratification) appear to explain much of the variability in phytoplankton chlorophyll a throughout this ecosystem. (PDF file contains 126 pages.)
Resumo:
The phylum Acanthocephala (intestinal worm parasites of vertebrates) of the Atlantic coast of the United States comprises 43 species and 20 genera belonging to three orders: Echinorhynchida, Neoechinorhynchida, and Polymorphida. Adults are exclusively intestinal parasites of vertebrates. This study includes those species found in vertebrates of marine and estuarine environments along the North American Atlantic coast between Maine and Texas. Species that can be found within that geographical range and those that typically infect freshwater fishes but that are occasionally present in marine or estuarine hosts are also included. The taxonamy, anatomy, natural history, and ecology of the phylum Acanthocephala are discussed, and an illustrated key to the genera is presented. Techniques, an annotated systematic treatment of all 43 species, and a systematic index are included. No systematic decisions will be made at this time, but areas where such decisions are pending will be indicated and discussed for future reports. (PDF file contains 32 pages.)
Resumo:
This manual includes an introduction to the general biology, a selected bibliography, and an illustrated key to 11 genera and 17 species of copepods of the Crustacea, Subclass Copepoda, Order Cyclopoida, Families Archinotodelphyidae, Notodelphyidae and Ascidicolidae, associated with ascidians from the Atlantic Coast of the United States. Species distributed from the Gulf of Maine to Long Island Sound are emphasized. An annotated systematic list, with statements of the world distribution and new records of association with hosts, and a systematic index are also provided. (PDF file contains 44 pages.)