31 resultados para London (Watford) Spring-Water Company.
Resumo:
The surface temperature of Windermere has been recorded by the staff of the Freshwater Biological Association on every weekday (with a few minor exceptions) since 11 January 1933. This publication presents this information in a form which can easily be used by individual research workers. There are 43 tables (1 for each year, 1933-1975) which give the data, expressed as degree-days centigrade. The tables show for each month the number of degree-days above each temperature from 0 degree C to the highest recorded, at 1 degree C intervals. Mean temperatures are obtained by dividing the number of degree-days over 0 degree C by the relevant number of days. The advantage of degree-days rather than mean temperatures is that degree-days are additive so data for any desired periods may be combined quickly and simply. Seasonal results for spring, summer, autumn and winter are presented in tabular form, as are selected totals for comparisons between years. Further tables give the mean temperature in each month of the year, and the frequency distributions of monthly mean temperatures.
Resumo:
Tap water is not sterile; it contains organisms which grow in water distribution systems or inside taps and their fittings. The absence of known pathogenic bacteria is assured by the absence of the indicator organisms but concerns have been raised in the past few years that drinking water fulfilling the standards laid down in the EC Directive ECC 80/778 may still cause disease. These concerns have arisen from several sources: the fact that a cause has been identified in only half of all suspected waterborne outbreaks of disease; reports have suggested that heterotrophic bacteria possessing single pathogenic mechanisms such as haemolysin may cause disease; reports of heterotrophic organisms causing water contact diseases in hospitals. These concerns led to a reappraisal of the pathogenic potential of heteretrophic bacteria, by carrying out an extensive literature search and review commissioned by the UK Water Research Company. This research identified many papers showing an association between drinking water and heterotrophic bacteria but only very few reports of suspected waterborne disease associated with the heterotrophs. The organisms demonstrating potential to cause disease were species of Aeromonas and Yersinia, but typing of organisms identified in patients and isolated from the water revealed very few similarities. The potential of Aeromonas and Yersinia to cause waterborne disease is thought to be very low and the Communicable Disease Surveillance Centre database of laboratory infections due to these two genera of organisms was analysed to produce population-related incidences for each health region in England and Wales. Additionally a laboratory questionnaire revealed different levels of ascertainment of these two organisms in different laboratories of the Public Health Laboratory Service.
Resumo:
A decade-long time series recorded in southern Monterey Bay, California demonstrates that the shallow, near-shore environment (17 m depth) is regularly inundated with pulses of cold, hypoxic and low pH water. During these episodes, oxygen can drop to biologically threatening levels, and pH levels were lower than expected. Weekly water chemistry monitoring revealed that the saturation state of aragonite (the more soluble form of calcium carbonate) was often below saturation and had a moderate positive relationship with pH, however, analytical and human error could be high. Pulses of hypoxia and low pH water with the greatest intensity arise at the onset of the spring upwelling season, and fluctuations are strongly semidurnal (tidal) and diurnal. Arrival of cold, hypoxic water on the inner shelf typically occurs 3 days after the arrival of a strong upwelling event and appears to be driven by upwelling modulated by internal tidal fluctuations. I found no relationship between the timing of low-oxygen events and the diel solar cycle nor with terrestrial nutrient input. These observations are consistent with advection of hypoxic water from the deep, offshore environment where water masses experience a general decline of temperature, oxygen and pH with depth, and inconsistent with biochemical forcing. Comparisons with concurrent temperature and oxygen time series taken ~20 km away at the head of the Monterey Canyon show similar patterns but even more intense hypoxic events due to stronger semidiurnal forcing there. Analysis of the durations of exposure to low oxygen levels establishes a framework for assessing the ecological relevance of these events. Increasing oceanic hypoxia and acidification of both surface and deep waters may increase the number, intensity, duration and spatial extent of future intrusions along the Pacific coast. Evaluation of the resiliency of nearshore ecosystems such as kelp forests, rocky reefs and sandy habitats, will require consideration of these events.
Resumo:
This Freely Associated States Shallow-water Coral Ecosystem Mapping Implementation Plan (FAS MIP) presents a framework for the development of shallow-water (~0–40 m; 0–22 fm) benthic habitat and possibly bathymetric maps of critical areas of the Freely Associated States (FAS). The FAS is made up of three self-governing groups of islands and atolls—the Republic of Palau (Palau), the Federated States of Micronesia (FSM), and the Republic of the Marshall Islands (RMI)—that are affiliated with the United States through Compacts of Free Association. This MIP was developed with extensive input from colleges, national and state regulatory and management agencies, federal agencies, non-governmental organizations, and individuals involved in or supporting the conservation and management of the FAS’s coral ecosystems. A list of organizations and individuals that provided input to the development of this MIP is provided in Appendix 1. This MIP has been developed to complement the Coral Reef Mapping Implementation Plan (2nd Draft) released in 1999 by the U.S. Coral Reef Task Force’s Mapping and Information Synthesis Working Group. That plan focused on mapping United States and FAS shallow-water (then defined as <30 m) coral reefs by 2009, based on available funding and geographic priorities, using primarily visual interpretation of aerial photography and satellite imagery. This MIP focuses on mapping the shallow-water (now defined as 0–40 m, rather than 0–30 m) coral ecosystems of the FAS using a suite of technologies and map development procedures. Both this FAS MIP and the 1999 Coral Reef Mapping Implementation Plan (2nd Draft) support to goals of the National Action Plan to Conserve Coral Reefs (U.S. Coral Reef Task Force, 2000). This FAS MIP presents a framework for mapping the coral ecosystems of the FAS and should be considered an evolving document. As priorities change, funding opportunities arise, new data are collected, and new technologies become available, the information presented herein will change.
Resumo:
The Southern Florida Shallow-water Coral Ecosystem Mapping Implementation Plan (MIP) discusses the need to produce shallow-water (~0-40 m; 0-22 fm) benthic habitat and bathymetric maps of critical areas in southern Florida and moderate-depth (~40-200 m; 22 -109 fm) bathymetric maps for all of Florida. The ~0-40 m depth regime generally represents where most hermatypic coral species are found and where most direct impacts from pollution and coastal development occur. The plan was developed with extensive input from over 90 representatives of state regulatory and management agencies, federal agencies, universities, and non-governmental organizations involved in the conservation and management of Florida’s coral ecosystems. Southern Florida’s coral ecosystems are extensive. They extend from the Dry Tortugas in the Florida Keys as far north as St Lucie Inlet on the Atlantic Ocean coast and Tarpon Springs on the Gulf of Mexico coast. Using 10 fm (18 m) depth curves on nautical charts as a guide, southern Florida has as much as 84 percent (30,801 sq km) of 36,812 sq km of potential shallow-water (<10 fm; <18 m) coral ecosystems the tropical and subtropical U.S. Moreover, southern Florida’s coral ecosystems contribute greatly to the regional economy. Coral ecosystem-related expenditures generated $4.4 billion in sales, income, and employment and created over 70,000 full-time and part-time jobs in the region during the recent 12-month periods when surveys were conducted.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.
Resumo:
Study Goals and Objectives: 1) Improve existing nutrient-related eutrophication assessment methods, updating (from early 1990s to early 2000s) the eutrophication assessment for systems included in the study with the improved method. 2) Develop a human-use/socioeconomic indicator to complement the assessment indicator. The human-use indicator was developed to evaluate costs of nutrient-related degradation in coastal waters and to put the issue into a broader context relevant to the interested public and legislators as well as to scientists. 3) Project objectives included collecting existing water quality data, developing an accessible database appropriate for application to a national study, and applying the assessment methods to 14 coastal systems – nine systems north of Cape Cod and five systems south. The geographical distribution of systems was used to examine potential regional differences in condition. 4) The intent is to use the lessons learned in this pilot study on a national scale to guide completion of an update of the 1999 National Estuarine Eutrophication Assessment.
Resumo:
This report is the second in a series from a project to assess land-based sources of pollution (LBSP) and effects in the St. Thomas East End Reserves (STEER) in St. Thomas, USVI, and is the result of a collaborative effort between NOAA’s National Centers for Coastal Ocean Science, the USVI Department of Planning and Natural Resources, the University of the Virgin Islands, and The Nature Conservancy. Passive water samplers (POCIS) were deployed in the STEER in February 2012. Developed by the US Geological Survey (USGS) as a tool to detect the presence of water soluble contaminants in the environment, POCIS samplers were deployed in the STEER at five locations. In addition to the February 2012 deployment, the results from an earlier POCIS deployment in May 2010 in Turpentine Gut, a perennial freshwater stream which drains to the STEER, are also reported. A total of 26 stormwater contaminants were detected at least once during the February 2012 deployment in the STEER. Detections were high enough to estimate ambient water concentrations for nine contaminants using USGS sampling rate values. From the May 2010 deployment in Turpentine Gut, 31 stormwater contaminants were detected, and ambient water concentrations could be estimated for 17 compounds. Ambient water concentrations were estimated for a number of contaminants including the detergent/surfactant metabolite 4-tert-octylphenol, phthalate ester plasticizers DEHP and DEP, bromoform, personal care products including menthol, indole, n,n-diethyltoluamide (DEET), along with the animal/plant sterol cholesterol, and the plant sterol beta-sitosterol. Only DEHP appeared to have exceeded a water quality guideline for the protection of aquatic organisms.
Resumo:
Coral reef ecosystems are some of the most complex and important ecosystems in the marine environment. They are also among the most biologically diverse and economically valuable ecosystems on earth, producing billions of dollars in food, as well as providing a suite of ecological services, such as recreation and tourism activities and coastal protection from storm and wave action. Yet, despite their value and importance, these fragile ecosystems are declining at an alarming rate (Waddell and Clarke (eds.) 2008) due to a myriad of threats both natural and manmade, including climate change, fishing pressure, and runoff and sedimentation. In response, the Unites States Coal Reef Task Force was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect the nation’s coral reef ecosystems. In order to better understand the current state of coral reef ecosystems and successfully mitigate the impacts of stressors, informational products, such as benthic (or sea floor) habitat maps, are critical. Benthic habitat maps support the ability to prioritize areas for further study and protection, and offer a baseline to evaluate the changes in ecosystems over time. In 2000, the United States Coral Reef Task Force charged NOAA with leading federal efforts to produce comprehensive digital maps of all U.S. shallow-water (approximately 0 to 30 m in depth) coral reef ecosystem habitats.
Resumo:
This report describes the creation and assessment of benthic habitat maps for shallow-water (<30m) marine environments of the Guánica/Parguera and Finca Belvedere Natural Reserve in southwest Puerto Rico. The objective was to provide spatially-explicit information on the habitat types, biological cover and live coral cover of the region’s coral reef ecosystem. These fine-scale habitat maps, generated by interpretation of 2010 satellite imagery, provide an update to NOAA’s previous digital maps of the U.S. Caribbean (Kendall et al., 2001) for these areas. Updated shallow-water benthic habitat maps for the Guánica/Parguera region are timely in light of ongoing restoration efforts in the Guánica Bay watershed. The bay is served directly by one river, the Rio Loco, which flows intermittently and more frequently during the rainy season. The watershed has gone through a series of manipulations and alterations in past decades, mainly associated with agricultural practices, including irrigation systems, in the upper watershed. The Guánica Lagoon, previously situated to the north of the bay, was historically the largest freshwater lagoon in Puerto Rico and served as a natural filter and sediment sink prior to the discharge of the Rio Loco into the Bay. Following alterations by the Southwest Water Project in the 1950s, the Lagoon’s adjacent wetland system was ditched and drained; no longer filtering and trapping sediment from the Rio Loco. Land use in the Guánica Bay/Rio Loco watershed has also gone through several changes (CWP, 2008). Similar to much of Puerto Rico, the area was largely deforested for sugar cane cultivation in the 1800s, although reforestation of some areas occurred following the cessation of sugar cane production (Warne et al., 2005). The northern area of the watershed is generally mountainous and is characterized by a mix of forested and agricultural lands, particularly coffee plantations. Closer to the coast, the Lajas Valley Agricultural Reserve extends north of Guánica Bay to the southwest corner of the island. The land use practices and watershed changes outlined above have resulted in large amounts of sediment being distributed in the Rio Loco river valley (CWP, 2008). Storm events and seasonal flooding also transport large amounts of sediment to the coastal waters. The threats of upstream watershed practices to coral reefs and the nearshore marine environment have been gaining recognition. Guánica Bay, and the adjacent marine waters, has been identified as a “management priority area” by NOAA’s Coral Reef Conservation Program (CRCP, 2012). In a recent Guánica Bay watershed management plan, several critical issues were outlined in regards to land-based sources of pollution (LBSP; CWP, 2008). These include: upland erosion from coffee agriculture, filling of reservoirs with sediment, in-stream channel erosion, loss of historical Guánica lagoon, legacy contaminants and sewage treatment (CWP, 2008). The plan recommended several management actions that could be taken to reduce impacts of LBSP, which form the basis of Guánica watershed restoration efforts.
Resumo:
Coral reef ecosystems of the Virgin Islands Coral Reef National Monument, Virgin Islands National Park and the surrounding waters of St. John, U.S. Virgin Islands are a precious natural resource worthy of special protection and conservation. The mosaic of habitats including coral reefs, seagrasses and mangroves, are home to a diversity of marine organisms. These benthic habitats and their associated inhabitants provide many important ecosystem services to the community of St. John, such as fishing, tourism and shoreline protection. However, coral reef ecosystems throughout the U.S. Caribbean are under increasing pressure from environmental and anthropogenic stressors that threaten to destroy the natural heritage of these marine habitats. Mapping of benthic habitats is an integral component of any effective ecosystem-based management approach. Through the implementation of a multi-year interagency agreement, NOAA’s Center for Coastal Monitoring and Assessment - Biogeography Branch and the U.S. National Park Service (NPS) have completed benthic habitat mapping, field validation and accuracy assessment of maps for the nearshore marine environment of St. John. This work is an expansion of ongoing mapping and monitoring efforts conducted by NOAA and NPS in the U.S. Caribbean and replaces previous NOAA maps generated by Kendall et al. (2001) for the waters around St. John. The use of standardized protocols enables the condition of the coral reef ecosystems around St. John to be evaluated in context to the rest of the Virgin Island Territories and other U.S. coral ecosystems. The products from this effort provide an accurate assessment of the abundance and distribution of marine habitats surrounding St. John to support more effective management and conservation of ocean resources within the National Park system. This report documents the entire process of benthic habitat mapping in St. John. Chapter 1 provides a description of the benthic habitat classification scheme used to categorize the different habitats existing in the nearshore environment. Chapter 2 describes the steps required to create a benthic habitat map from visual interpretation of remotely sensed imagery. Chapter 3 details the process of accuracy assessment and reports on the thematic accuracy of the final maps. Finally, Chapter 4 is a summary of the basic map content and compares the new maps to a previous NOAA effort. Benthic habitat maps of the nearshore marine environment of St. John, U.S. Virgin Islands were created by visual interpretation of remotely sensed imagery. Overhead imagery, including color orthophotography and IKONOS satellite imagery, proved to be an excellent source from which to visually interpret the location, extent and attributes of marine habitats. NOAA scientists were able to accurately and reliably delineate the boundaries of features on digital imagery using a Geographic Information System (GIS) and fi eld investigations. The St. John habitat classification scheme defined benthic communities on the basis of four primary coral reef ecosystem attributes: 1) broad geographic zone, 2) geomorphological structure type, 3) dominant biological cover, and 4) degree of live coral cover. Every feature in the benthic habitat map was assigned a designation at each level of the scheme. The ability to apply any component of this scheme was dependent on being able to identify and delineate a given feature in remotely sensed imagery.
Resumo:
Digital maps of the shallow (<~30m deep) coral reef ecosystems of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery acquired between 2004 and 2006. Reef ecosystem features were digitized directly into a Geographic Information System. Benthic features were categorized according to a classification scheme with attributes including zone (location such as lagoon or forereef, etc.), structure (bottom type such as sand or patch reef, etc.) and percent hard bottom. This atlas consists of 27 detailed maps displaying reef zone and structure of coral ecosystems around Majuro. Adjacent maps in the atlas overlap slightly to ensure complete coverage. Maps and associated products can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications. Maps are not to be used for navigation.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) initiated a coral reef research program in 1999 to map, assess, inventory, and monitor U.S. coral reef ecosystems (Monaco et al. 2001). These activities were implemented in response to requirements outlined in the Mapping Implementation Plan developed by the Mapping and Information Synthesis Working Group (MISWG) of the Coral Reef Task Force (CRTF) (MISWG 1999). As part of the MISWG of the CRTF, NOS' Biogeography Branch has been charged with the development and implementation of a plan to produce comprehensive digital coral-reef ecosystem maps for all U.S. States, Territories, and Commonwealths within five to seven years. Joint activities between Federal agencies are particularly important to map, research, monitor, manage, and restore coral reef ecosystems. In response to the Executive Order 13089 and the Coral Reef Conservation Act of 2000, NOS is conducting research to digitally map biotic resources and coordinate a long-term monitoring program that can detect and predict change in U.S. coral reefs, and their associated habitats and biological communities. Most U.S. coral reef resources have not been digitally mapped at a scale or resolution sufficient for assessment, monitoring, and/or research to support resource management. Thus, a large portion of NOS' coral reef research activities has focused on mapping of U.S. coral reef ecosystems. The map products will provide the fundamental spatial organizing framework to implement and integrate research programs and provide the capability to effectively communicate information and results to coral reef ecosystem managers. Although the NOS coral program is relatively young, it has had tremendous success in advancing towards the goal to protect, conserve, and enhance the health of U.S. coral reef ecosystems. One objective of the program was to create benthic habitat maps to support coral reef research to enable development of products that support management needs and questions. Therefore this product was developed in collaboration with many U.S. Pacific Territory partners. An initial step in producing benthic habitat maps was the development of a habitat classification scheme. The purpose of this document is to outline the benthic habitat classification scheme and protocols used to map American Samoa, Guam and the Commonwealth of the Northern Mariana Islands. Thirty-two distinct benthic habitat types (i.e., four major and 14 detailed geomorphological structure classes; eight major and 18 detailed biological cover types) within eleven zones were mapped directly into a geographic information system (GIS) using visual interpretation of orthorectified IKONOS satellite imagery. Benthic features were mapped that covered an area of 263 square kilometers. In all, 281 square kilometers of unconsolidated sediment, 122 square kilometers of submerged vegetation, and 82.3 square kilometers of coral reef and colonized hardbottom were mapped.
Resumo:
Salinity, fresh water and sea level data from the Negombo Lagoon with respect to oceanic sea level and salinity data were considered. The open ocean spring tidal range was 0.57 m, whereas the neap tidal range was 0.10 m. In lagoon, the corresponding spring tidal range was 0.13 m and neap tidal range is 0.05 m. The lagoon tide was strongly choked because of the restricted inlet channel, through which only a limited water exchange could take place over a tidal cycle. Mean water exchange and the residence times for variable fresh water supplies were calculated. These calculations were based on fortnightly measurements of salinity and river discharges in 1993. During this year, salinity varied from 30-5‰ depending on the river inputs which were 20-225 m³ sˉ¹. Corresponding residence times varied from 11-2 days and the tide is dominated the exchange during low discharges of freshwater.