27 resultados para Kings and rulers--Conduct of life
Resumo:
(PDF contains 24 pages)
Resumo:
The bay anchovy occurs along the Atlantic and Gulf of Mexico coasts, from Cape Cod, Massachusetts, to Yucatan, Mexico (Hildebrand 1963), except for the Florida Keys where it is apparently absent (Daly 1970). (PDF contains 22 pages)
Resumo:
(PDF contains 24 pages)
Resumo:
Three genetically distinct groups: British Columbia to northern California, Southern California to the northern Baja peninsula, and central and southern Baja California. (PDF contains 21 pages)
Resumo:
English: For nearly a century, fisheries scientists have studied marine fish stocks in an effort to understand how the abundances of fish populations are determined. During the early lives of marine fishes, survival is variable, and the numbers of individuals surviving to transitional stages or recruitment are difficult to predict. The egg, larval, and juvenile stages of marine fishes are characterized by high rates of mortality and growth. Most marine fishes, particularly pelagic species, are highly fecund, produce small eggs and larvae, and feed and grow in complex aquatic ecosystems. The identification of environmental or biological factors that are most important in controlling survival during the early life stages of marine fishes is a potentially powerful tool in stock assessment. Because vital rates (mortality and growth) during the early life stages of marine fishes are high and variable, small changes in those rates can have profound effects on the properties of survivors and recruitment potential (Houde 1989). Understanding and predicting the factors that most strongly influence pre-recruit survival are key goals of fisheries research programs. Spanish: Desde hace casi un siglo, los científicos pesqueros han estudiado las poblaciones de peces marinos en un intento por entender cómo se determina la abundancia de las mismas. Durante la vida temprana de los peces marinos, la supervivencia es variable, y el número de individuos que sobrevive hasta las etapas transicionales o el reclutamiento es difícil de predecir. Las etapas de huevo, larval, y juvenil de los peces marinos son caracterizadas por tasas altas de mortalidad y crecimiento. La mayoría de los peces marinos, particularmente las especies pelágicas, son muy fecundos, producen huevos y larvas pequeños, y se alimentan y crecen en ecosistemas acuáticos complejos. La identificación los factores ambientales o biológicos más importantes en el control de la supervivencia durante las etapas tempranas de vida de los peces marinos es una herramienta potencialmente potente en la evaluación de las poblaciones. Ya que las tasas vitales (mortalidad y crecimiento) durante las etapas tempranas de vida de los peces marinos son altas y variables, cambios pequeños en esas tasas pueden ejercer efectos importantes sobre las propiedades de los supervivientes y el potencial de reclutamiento (Houde 1989). Comprender y predecir los factores que más afectan la supervivencia antes del reclutamiento son objetivos clave de los programas de investigación pesquera.
Resumo:
Commercial fisheries that are managed with minimum size limits protect small fish of all ages and may affect size-selective mortality by the differential removal of fast growing fish. This differential removal may decrease the average size at age, maturation, or sexual transition of the exploited population. When fishery-independent data are not available, a comparison of life history parameters of landed with those of discarded fish (by regulation) will indicate if differential mortality is occurring with the capture of young but large fish (fast growing phenotypes). Indications of this differential size-selective mortality would include the following: the discarded portion of the target fish would have similar age ranges but smaller sizes at age, maturation, and sexual transition as that of landed fish. We examined three species with minimum size limits but different exploitation histories. The known heavily exploited species (Rhomboplites aurorubens [vermilion snapper] and Pagrus pagrus [red porgy]) show signs of this differential mortality. Their landed catch includes many young, large fish, whereas discarded fish had a similar age range and mean ages but smaller sizes at age than the landed fish. The unknown exploited species, Mycteroperca phenax (scamp), showed no signs of differential mortality due to size-selective fishing. Landed catch consisted of old, large fish and discarded scamp had little overlap in age ranges, had significantly different mean ages, and only small differences in size at age when compared to comparable data for landed fish.
Resumo:
This contribution summarizes knowledge on the biology (population dynamics, reproduction, ecology) of 25 fish species from the Lower Amazon, Brazil, based on data from a Brazilian-German field project (IARA) and a review of the literature.
Resumo:
Morphological development of the larvae and small juveniles of estuary perch (Macquaria colonorum) (17 specimens, 4.8−13.5 mm body length) and Australian bass (M. novemaculeata) (38 specimens, 3.3−14.1 mm) (Family Percichthyidae) is described from channel-net and beach-seine collections of both species, and from reared larvae of M. novemaculeata. The larvae of both are characterized by having 24−25 myomeres, a large triangular gut (54−67% of BL) in postflexion larvae, small spines on the preopercle and interopercle, a smooth supraocular ridge, a small to moderate gap between the anus and the origin of the anal fin, and distinctive pigment patterns. The two species can be distinguished most easily by the different distribution of their melanophores. The adults spawn in estuaries and larvae are presumed to remain in estuaries before migrating to adult freshwater habitat. However, larvae of both species were collected as they entered a central New South Wales estuary from the ocean on flood tides; such transport may have consequences for the dispersal of larvae among estuaries. Larval morphology and published genetic evidence supports a reconsideration of the generic arrangement of the four species currently placed in the genus Macquaria.
Resumo:
The life history and population dynamics of the finetooth shark (Carcharhinus isodon) in the north-eastern Gulf of Mexico were studied by determining age, growth, size-at-maturity, natural mortality, productivity, and elasticity of vital rates of the population. The von Bertalanffy growth model was estimated as Lt=1559 mm TL (1–e–0.24 (t+2.07)) for females and Lt = 1337 mm TL (1–e–0.41 (t+1.39)) for males. For comparison, the Fabens growth equation was also fitted separately to observed size-at-age data, and the fits to the data were found to be similar. The oldest aged specimens were 8.0 and 8.1 yr, and theoretical longevity estimates were 14.4 and 8.5 yr for females and males, respectively. Median length at maturity was 1187 and 1230 mm TL, equivalent to 3.9 and 4.3 yr for males and females, respectively. Two scenarios, based on the results of the two equations used to describe growth, were considered for population modeling and the results were similar. Annual rates of survivorship estimated through five methods ranged from 0.850/yr to 0.607/yr for scenario 1 and from 0.840/yr to 0.590/yr for scenario 2. Productivities were 0.041/yr for scenario 1 and 0.038/yr for scenario 2 when the population level that produces maximum sustain-able yield is assumed to occur at an instantaneous total mortality rate (Z) equaling 1.5 M, and were 0.071/yr and 0.067/yr, when Z=2 M for scenario 1 and 2, respectively. Mean generation time was 6.96 yr and 6.34 yr for scenarios 1 and 2, respectively. Elasticities calculated through simulation of Leslie matrices averaged 12.6% (12.1% for scenario 2) for fertility, 47.7% (46.2% for scenario 2) for juvenile survival, and 39.7% (41.6% for scenario 2) for adult survival. In all, the finetooth shark exhibits life-history and population characteristics intermediate to those of sharks in the small coastal complex and those from some large coastal species, such as the blacktip shark (Carcharhinus limbatus).